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Finite Element Method:

 The finite element method is a numerical method for solving problems of engineering and
mathematical physics.

* Usually the problem addressed is too complicated to be solved satisfactorily by classical
analytical methods.

« The FEM originated as a method of stress analysis, but today it is used to analyze problems
of

dHeat transfer

dFluid flow

Lubrication

(Mass transport

LElectric and magnetic fields

« The Finite Element procedure produces many simultaneous algebraic equations, which are
generated and solved on digital computer.

 The results are usually not exact, however, errors can decreased to an acceptable values
with reasonable cost.




The need for using non-analytical solution:

 For problems involving:

v' Complicated geometries,

v’ Complicated loadings, and

v'Complicated material properties,

It is generally not possible to obtain analytical mathematical solutions.

« Analytical solutions are those given by a mathematical expression that yields the values
of the desired unknown quantities at any location in a body (here total structure or

physical system of interest) and are thus valid for an infinite number of locations in the
body.

« These analytical solutions generally require the solution of ordinary or partial differential
equations, which because of the complicated geometries, loadings, and material
properties, are not usually obtainable.



Hence we need to rely on numerical methods, such as the finite element method, for

acceptable solutions.

The finite element formulation of the problem results in a system of simultaneous
algebraic equations for solution, rather than requiring the solution of differential

equations.

These numerical methods yield approximate values of the unknowns at discrete numbers

of points in the continuum.

Hence this process of modeling a body by dividing it into an equivalent system of smaller
bodies or units (finite elements) interconnected at points common to two or more
elements (nodal points or nodes) and/or boundary lines and/or surfaces is called

Discretization.
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* In the finite element method, instead of solving the problem for the entire body In
one operation, we formulate the equations for each finite element and combine

them to obtain the solution of the whole body.

 Briefly, the solution for structural problems typically refers to determining the

displacements at each node and the stresses within each element making up the

structure that is subjected to applied loads.

* In nonstructural problems, the nodal unknowns may, for instance, be temperatures

or fluid pressures due to thermal or fluid fluxes.
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* In this method of analysis, a complex region defining a continuum Is

discretized into simple geometric shapes called finite elements.

« The material properties and the governing relationships are considered
over these elements and expressed in terms of unknown values at element

corners.

« An assembly process, duly considering the loading and constraints, results

In a set of equations.

« Solution of these equations gives us the approximate behavior of the

continuum.



Problem Classification, modeling and discretization:

1. Problem classification:

 The first step in solving problems is to identify it.
 What are the more important physical phenomena involved?

* |s the problem is time dependent or time independent, i.e. static or
dynamic?

* Is nonlinearity involved, so that iterative solution Is necessary?
* What results are required from analysis?

« What accuracy Is required?



« A complicated problems may not lie in one category.

« An example is a fluid — structure interaction problem, such as earthquake
excitation of a storage tank that contains liquid.

« Motion of the liquid makes a thin walled tank deflect, and deflection of the thin
walls modifies the liquid motion.

 Therefore, structural displacement and fluid motion fields cannot be considered
separately.

* So that, calculations must take their interaction into account.

 This is known as direct or mutual coupling, in which each field influence the
other.

 Other problems may be called as indirect or sequential coupling, in which only
one field influences the other.

« An example, is the thermal stresses, where temperature influences stresses but
stresses have no influence on temperature.



2. Modellinag:

 The equations is applied to a model rather than to an actual physical problem.

A geometric model becomes a mathematical model when its behavior Is described,
or approximated by selected differential equations and boundary conditions.

 The mathematical model is an idealization, in which geometry, material properties,
loads and boundary conditions are simplified.

« The simplification depends on what features are important or unimportant in
obtaining the required results.

« As an example In stress analysis, materials may be regarded as homogeneous,
Isotropic, and linearly elastic.

A load distributed over a small area may be regarded as concentrated at a point (
which is not physically possible).

« Asupport may be represented as fixed (actually no support is completely fixed)

* Aflat structure may be modeled as two dimensional If stress variation in in the
thickness direction is neglected.




3. Discretization:

« A mathematical model is discretized by dividing it into a mesh of finite elements.

 Thus a fully continuous field is represented by a piecewise continuous field defined by a

finite number of nodal quantities and simple interpolation within each element.

X, U P
 Consider the tapered bar shown. >'—-‘

 The displacement of the right end is required.

 The classical approach is to write the differential equation of the tapered bar, then solve it
for axial displacement u as a function of x, and finally substitute x= L; to find the

required end displacement.



* The finite element approach to this problem does not begin with a differential
equation.

* Instead, the bar is discretized by modeling it as a series of segments of certain
dimensions (finite elements).

« Each element is of uniform but of different cross sectional area A.
* In each element, the displacement u varies linearly with local x of each element.
* Therefore, for 0 <x <L, u is a piecewise smooth function of x.

* The elongation of each element can be determined from
the elementary formula PL/AE. Ay
. . - B
 The end displacement, at x= L+, Is the sum of the ?
elemental elongations. ?
* The accuracy Is improved as the number of elements are e 4xI=Lp——

Increased.



* In general, the finite element method models a structure as an assemblage of small

parts (elements).

» Each element is of simple geometry and therefore is much easier to analyze than

the actual structure.

* In essence, the complicated solution is approximated by a model that consists of

piecewise-continuous simple solutions.

* Elements are called “Finite” to distinguish them from differential elements used in

calculus (infinite elements).
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HISTORY OF FINITE ELEMENT METHOD:

 Basic ideas of the finite element method originated from advances in aircraft structural
analysis.

* In 1941, Hrenikoff presented a solution of elasticity problems using the “frame work
method.”

* Courant’s paper, which used piecewise polynomial interpolation over triangular

subregions to model torsion problems, was published in 1943.

 Turner et al. derived stiffness matrices for truss, beam, and other elements and presented
their findings in 1956.

» The term finite element was first coined and used by Clough in 1960.



In the early 1960s, engineers used the method for approximate solution of problems in

stress analysis, fluid flow, heat transfer, and other areas.

A book by Argyris in 1955 on energy theorems and matrix methods laid a foundation for

further developments in finite element studies.
The first book on finite elements by Zienkiewicz and Cheung was published in 1967.

In the late 1960s and early 1970s, finite element analysis was applied to nonlinear

problems and large deformations.
Oden’s book on nonlinear continua appeared in 1972.

Mathematical foundations, new element development, convergence studies, and other

related areas fall in this category were laid in the 1970s.



Advantages of Finite Element Method:

 Can readily handle very complex geometry:

« Can handle a wide variety of engineering problems

- Solid mechanics - Dynamics - Heat problems - Fluids - Electrostatic problems
 Can handle complex restraints

- Indeterminate structures can be solved.

 Can handle complex loading

- Nodal load (point loads)

- Element load (pressure, thermal, inertial forces)

- Time or frequency dependent loading



Disadvantages of Finite Element Method:

* A general closed-form solution, which would permit one to examine

system response to changes In various parameters, is not produced.
* The FEM obtains only "approximate" solutions.
* The FEM has "inherent" errors.

« Mistakes by users can be fatal.



Procedure of FEA:

1
2.
3.
4

Physical Problem (Structural, heat, flow, ..)
Mathematical Model (Differential equations)
Material properties, Loading, Boundary conditions.
Finite element solution:

4 a- choice of element type:

» 1D (truss element, Beam element)
» 2D ( Shell element, Plate element)
»3D ( Solid Element)

4 b- mesh density (number of elements)
4 c- solution parameters



5. Representation of loading and boundary conditions

* 6. Type and method of solution (Linear, Nonlinear, Structural Static
Analysis, Modal Analysis, Transient Dynamic Analysis,
Buckling Analysis, Contact, Steady- state Thermal Analysis, Transient

Thermal Analysis

« 7. Obtaining the results: Displacement, Stress, Strain, Natural

frequency, Temperature, Time history, pressure)



Basic Steps and Properties of
Finite Element Method



General Steps of the Finite Element Method:

 Typically, for the structural stress-analysis problem, the engineer seeks to
determine displacements and stresses throughout the structure, which is in
equilibrium and is subjected to applied loads.

« For many structures, it is difficult to determine the distribution of deformation
using conventional methods, and thus the finite element method is necessarily
used.

 There are three primary methods that can be used to derive the finite element
equations of a physical system. These are
(1) the direct method or direct equilibrium method for structural analysis problems,

(2) the variational methods consisting of among the subsets energy methods and the
principle of virtual work, and

(3) the weighted residual methods.



(1) Direct Approaches:

The direct methods, being the simplest and yielding a clear physical insight into the finite
element method, is recommended in the initial stages of learning the concepts of the finite

element method.

However, the direct method is limited in its application to deriving element stiffness
matrices for one-dimensional elements involving springs, uniaxial bars, trusses, and

beams.

There are two general direct approaches traditionally associated with the finite element

method as applied to structural mechanics problems.

One approach, called the force ( or flexibility) method, the second is called the stiffness (

or displacement) method.



1.1 Flexibility ( Force ) Method:

 The force, or flexibility, method, uses internal forces as the unknowns of the

problem.
* To obtain the governing equations, first the equilibrium equations are used.

* Then necessary additional equations are found by introducing compatibility

equations.

 The result is a set of algebraic equations for determining the redundant or

unknown forces.



1.2 Stiffness (Displacement) method:

* The displacement, or stiffness, method, assumes the displacements of the nodes as
the unknowns of the problem.

 For instance, compatibility conditions requiring that elements connected at a
common node, along a common edge, or on a common surface before loading
remain connected at that node, edge, or surface after deformation takes place are

Initially satisfied.
* Then the governing equations are expressed in terms of nodal displacements using

the equations of equilibrium and an applicable law relating forces to
displacements.



» These two direct approaches result in different unknowns (forces or
displacements) in the analysis and different matrices associated with their

formulations (flexibilities or stiffnesses).

* It has been shown that, for computational purposes, the displacement (or stiffness)
method is more desirable because its formulation is simpler for most structural
analysis problems.

 Furthermore, a vast majority of general-purpose finite element programs have

Incorporated the displacement formulation for solving structural problems.

« Consequently, only the displacement method will be used throughout this course.



(2) Variational Methods:

A second general method that can be used to develop the governing equations for both

structural and nonstructural problems is the variational method.

 The variational method is much easier to use for deriving the finite element equations for

two- and three-dimensional elements than the direct method.

» However, it requires the existence of a “functional”, that upon minimizing yields the

stiffness matrix and related element equations.
 The variational method includes a number of principles, such as
1) The principle of minimum potential energy, and

2) The principle of virtual work.



2.1 Principle of minimum potential energy:

 For structural/stress analysis problems, we can use the “principle of minimum potential

energy” as the functional.

 This principle is extensively used for it is relatively easy physical concept to understand

and has likely been introduced in an undergraduate course in basic applied mechanics.

« The theorem of minimum potential energy applies to materials behaving in a linear-elastic

manner.

« A functional analogous to that used in the theorem of minimum potential energy can be
employed to develop the finite element equations for the nonstructural problem such as

heat transfer.



2.2 Principle of Virtual Work:

 Another variational principle often used to derive the governing equations is
the principle of virtual work.

* This principle applies more generally to materials that behave in a linear-
elastic fashion, as well as those that behave in a nonlinear fashion.

 The principle of virtual work can be used for developing the general
governing finite element equations that can be applied specifically to bars,
beams, and two- and three-dimensional solids in either static or dynamic

systems.



(3) Weighted Residual Methods:

» The weighted residual methods allow the finite element method to be applied
directly to any differential equation without having the existence of a variational
principle.

* The widely used weighted residual methods are:
a) Galerkin’s method,

b) Collocation Method,

c) Subdomain Method, and

d) Least Squares Method



Step 1. Discretization and Selecting the Element Types:

* First step involves dividing the body into an equivalent system of finite elements
with associated nodes and choosing the most appropriate element type to model
most closely the actual physical behavior.

 The total number of elements used and their variation in size and type within a
given body are primarily matters of engineering judgment.

* The elements must be made small enough to give usable results and yet large
enough to reduce computational effort.

« Small elements (and possibly higher order elements) are generally desirable where
the results are changing rapidly, such as where changes in geometry occur; large
elements can be used where results are relatively constant.

» The discretized body or mesh is often created with mesh-generation programs or
preprocessor programs available to the user.



Selecting the appropriate Element:

 The choice of elements used in a finite element analysis depends on the
physical state of the body under actual loading conditions and on how close

to the actual behavior the analyst wants the results to be.

 Judgment concerning the appropriateness of one-, two-, or three-

dimensional idealizations Is necessary.

* Moreover, the choice of the most appropriate element for a particular
problem is one of the major tasks that must be carried out by the

designer/analyst.



Types and Shapes of Element:

 Based on the problem considered the elements may be on of the

following types:
1) One dimensional elements
2) Two dimensional elements
3) Axi-symmetric elements and

4) Three dimensional elements.

U of Bsarah - D of Civil Eng Dr Abdulamir Atalla 2022



1. One dimensional element:

» These elements are suitable for the analysis of one dimensional problem and may

(]

5
1 o) " = 1
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be called as line elements. [ | [
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« Examples of the one dimensional elements are: Spring, Bar, Truss, and Beam

(frame) elements. :
* One dimensional elements usually have two
nodes (one at each end).

« Each node may has one or more degree(s) of
freedom.

* Frame Element have 6 DOF at each node.
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 The line elements have a cross-sectional area but are usually

represented by line segments.

* In general, the cross-sectional area within the element can vary,

however constant Is usually used.

 The simplest line element (called a linear element) has two nodes, one
at each end, although higher-order elements having three nodes or

more (called quadratic, cubic, etc. elements) also exist.

* The line elements are the simplest of elements to consider.



2. Two dimensional elements:

« Two dimensional elements are used to solve two dimensional problems.

« Common two dimensional problems in stress analysis are plane stress, plane strain
and plate problems.

Examples of two dimensional problems are: a plate subjected to in-plane stresses
and bending of slab.

3

Two dimensional elements often used is three noded triangular
elements.

It has the distinction of being the first and most used element.

« These elements are known as Constant Strain Triangles

(CST) or Linear Displacement Triangles. 1
Constant Strain
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Six noded and ten noded triangular elements are also used by the analysts.

Six noded triangular element is known as Linear Strain Triangle (LST) or as
Quadratic Displacement Triangle.

Ten noded triangular elements are known as Quadratic Strain Triangles (QST) or Cubic
Displacement Triangles.

15 noded and 21 noded elements may also used.
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« Asimple but less used two dimensional element is the four

noded rectangular element whose sides are parallel to the

global coordinate systems.

 This elements are easy to construct automatically but it is not !

well suited to approximate inclined boundaries.

 Rectangular elements of higher order also

I
(YR
can be used. AN

N

« Lagrange rectangle in which nodes are in T s
the form of grid points. ¢

 Serendipity rectangles which are having .

nodes only along the external boundaries. e
Plate Element Shell Element

6 DOF per node 6-DOF per node
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Lagrange family rectangular elements
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Lagrange Elements have nodes in the
form of gnd p()in'[s_ Serendipity family rectangular elements

Serendipity Elements have nodes
only along the external boundaries.
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« Quadrilateral Elements are also used in finite element analysis

* Initially quadrilateral elements were developed by combining
triangular elements. |

 But It has taken back stage after isoparametric concept was )
developed.

* Isoparametric concept Is based on using same functions for defining geometries
and nodal unknowns.

« Even higher order triangular elements may be used to generate quadrilateral
elements.

Y
A

P <
<
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 Using isoparametric concept even curved elements are developed to
take care of boundaries with curved shapes.

4 Y
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<3

U of Bsarah - D of Civil Eng Dr Abdulamir Atalla 2022

P X P X




3. Axisymmetric Elements:

* These are also known as ring type elements.

* These elements are useful for the analysis of axi-symmetric problems such as
analysis of cylindrical storage tanks, shafts, rocket nozzles.

« Axi-symmetric elements can be constructed from one or two dimensional elements.
« One dimensional axi-symmetric element is a conical surface.

« Two dimensional axi-symmetric element is a ring with a triangular or quadrilateral
Cross section.

Quadrilateral ring

Triangular ring
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4. Three dimensional elements:

* Similar to the triangle for two dimensional problems tetrahedron is the basic
element for three dimensional problems.

 Tetrahedron having four nodes, one at each corner.

* Three dimensional elements with eight nodes are either in the form of a general
hexahedron or a rectangular prism, which is a particular case of a hexahedron.

 The rectangular prism element is many times called as a brick element also.
 Higher order three dimensional elements are also used.

Vi l

/f“‘

Tetrahedrals Regular hexahedral Irregular hexahedral
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The Nodes:

* Nodes are the selected finite points at which basic unknowns (displacements in
elasticity problems, temperature in heat transfer problems, ... etc.) are to be
determined in the finite element analysis.

 The basic unknowns at any point inside the element are determined by using
approximating/interpolation functions named as Shape Functions in terms of the
nodal values of the element.

 There are two types of nodes; external nodes and internal nodes.

 External nodes are those which occur on the edges/surface of the elements and
they may be common to two or more elements.

* These nodes may be further classified as (1) Primary nodes and (ii) Secondary
nodes.
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External and Internal Nodes:

* Primary nodes occur at the ends of one dimensional elements or at the corners in
the two or three dimensional elements.

» Secondary nodes occur along the side of an element but not at corners.

& o 1,2 - Primary nodes
Z’ ) 3, 4 - Internal nodes

. ¢,
* |Internal nodes are the one which 1

occur inside an element.

w D

. ; 1,2, 3,4 - Primary nodes
* They are specific to the element ., L - 5,67, 8 Secondary nodes

9 - Internal node

selected I.e. there will not be any 15-iemaloce ) 7

other element connecting to this node. 7 ’ 7
 Such nodes are selected to satisfy the

requirement of geometric isotropy ' > 7

while choosing interpolation

functions. : 3 : ; 0 % 97
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Coordinates System:

* The following terms are commonly referred in FEM
1. Global coordinates
2. Local coordinates, and

3. Natural coordinates.
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Global Coordinates:

 The coordinate system used to define the points in the entire structure
Is called global coordinate system.

1 (1) 2 (2) 3
O }7 G S = >
X, X, X, )
(a)
y
A
2 (6) 3 (8) 4
() (12)
(1) (7)
(3) 9) (11)
4 (2) (4) (100 | (13 5 > x
1 6 7 8
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|_ocal Coordinates:

* For the convenience of deriving element properties, in FEM many
times for each element a separate coordinate system is used.

* The local coordinates are measured from the node point 1 of each
element.

« However, the final equations are to be formed in the common
coordinate system I.e. global coordinate system only.

X1

> <

(1)

(2)

C

o)) 0]

1
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Non-dimensional local coordinates:

 Often it is more convenient to express the local coordinate as a nondimensional
number; such a procedure can considerably facilitate the integrations and
differentiations involved in the subsequent computation.

* The non-dimensional local coordinate for 1D element can be obtained by dividing
the local coordinate by the element length, I.e. . 5

s =X/l . N °
Where | is the length of the element. X (local coordinate)

s ( nondimensional coordinate)

* The value of s varies from 0 at node 1 to 1.0 at node 2.
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Natural Coordinates:
« It is obtained by assigning weightages to the nodal coordinates in defining the
coordinate of any point inside the element.

» Hence such system has the property that ith coordinate has unit value at node 1 of
the element and zero value at all other nodes.

* The use of natural coordinate system is advantageous in assembling element
properties (stiffness matrices), since closed form integrations formulae are
available when the expressions are in natural coordinate systems.

* For 1-D elements, the natural coordinates system gives each point two natural
coordinates L, and L.

 The Cartesian coordinates of node 1 and node 2 are x, and X, respectively.

« Since natural coordinates are weightage to the nodal coordinates, total weightage
at any point is unity i.e., 1

L, +L,=1 (1) 1 x
and a.ISO Ll Xl + L2 X2 =X (2) - 1 >le

P (L, L)

2
=4 » X
X

A
~
1
\
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In matrix form

LT
B 2Tl

|
|
P R I R T i [ e il

Noting that x, — X, = length of the element (l), then,

._-

2
G ©
hz l . . H
] . (a) Variation of L,
* L, is1atnode 1and is zero at node 2.

* L, Is zero at node 1 and is one at node 2. % T
« The variation is linear. 2

(b) Variation of L,
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Natural coordinates &:

* |n the second alternative, we can attach the origin of the local system at an
Intermediate point in the element, say, at the midpoint.

* Here the natural coordinate i1s written as
£=x/(112) of— & S

2o

« £ =-1atnode 1 and +1 at node 2.

Variation of &
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Step 2. Select a Displacement Function:

* This step involves choosing a displacement function within each element.

 The function is defined within the element using the nodal values of the
element.

* Linear, quadratic, and cubic polynomials are frequently used functions
pecause they are simple to work with in finite element formulation.

* However, trigonometric series can also be used.

 For a two-dimensional element, the displacement function is a function of
the coordinates in its plane (say, the x-y plane).



 The functions are expressed in terms of the nodal unknowns (in the two-

dimensional problem, in terms of an x and a y component).
« The same general displacement function can be used repeatedly for each element.

» Hence the finite element method is one in which a continuous quantity, such as the
displacement throughout the body, is approximated by a discrete model composed

of a set of piecewise-continuous functions defined within each finite domain or

finite element.

 For the one-dimensional spring and bar elements, the displacement function is a
function of a single coordinate (say X, along the axis of the spring or bar).



Interpolation functions:

* One of the main ideas in the finite element method is to describe the variation of
the field variable ( e.g. the displacement) throughout the element by a trial
approximate functions.

 This implies that since it is difficult to find a closed form or exact solution, we
guess a solution shape or distribution of displacement by using an appropriate
mathematical function.

* In choosing this function, we must follow the laws, principles, and constraints or
boundary conditions inherent in the problem.

« The most common functions used are polynomials.

* In the initial stages of the finite element method, the polynomials used were
expressed In terms of generalized coordinates; however, now most finite element
work is done by using interpolation functions, which can often be considered as
transformed generalized coordinate functions.



 The simplest polynomial that we can use Is the one that gives linear
variation of displacements within the element.

u=a,; +a,x
atnode 1, u, =a;+a,x;
at node 2, u,=a; +a, X,

In matrix form, u=a, +a,x
(U _[1 xg {al} /uz
tu = {uz}_ 1 xz] a,) “

1 2

or

1u}= [x]{a}



Solving for [a], yields,
{a} = [x] Hu} .ie.

il
az) |1 «x, Uy
{a1}_ 1 [xz —IT{U1}_l[x2 —Xq {M}
Az} xp—x; —X1 1 Uy 1l-1 1 Uy

From which, a, = % (x, u; —x1uy),and a, = % (U, —uq)

Thus,u =[1  x] {Zl}:[l X]Hfi _fll {Zﬂ



Nodal Unknowns:

 Basic unknowns may be displacements for stress analysis, temperatures
for heat flow problems and the potentials for fluid flow or in the magnetic

field problems.

* In the problems like truss analysis, plane stress and plane strain, it is

enough If the continuity of only displacements are satisfied, since there Is

no change In the slopes at any nodal point.

* Such problems are classified as ‘zeroth’ continuity problems and are
indicated as C%-continuity problems.
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* In case of beams and plates, not only the continuity of displacements, but the slope

continuity also should be ensured.

« Since the slope is the first derivative of displacement, this type of problems are

classified as ‘First order continuity problems and are denoted as C'—continuity

problems.
¢ dd
b4 dx
dpy
I dx
:
co l b2 l
|
c? dd,
/ dx
| I

0 a X 0 a X
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Step 3: Define the Strain/Displacement and Stress/Strain
Relationships:

Strain/displacement and stress/strain relationships are necessary for deriving the equations
for each finite element.

In the case of one-dimensional deformation, say, in the x direction, we have strain ¢,
related to displacement u by

d ]
= d—z (for small strains)

In addition, the stresses must be related to the strains through the stress/ strain law
(generally called the constitutive law).

The ability to define the material behavior accurately is most important in obtaining
acceptablé results.

The sif)nplest of stress/strain laws (Hooke’s law) which 1s often used in stress analysis, 1s
given by

Ex

o, = E¢,
where g, 1s the stress in the x direction and E is the modulus of elasticity.



Step 4: Derive the Element Stiffness Matrix and Equations:

* Initially, the development of element stiffness matrices and element
equations was based on the concept of stiffness influence coefficients,

which presupposes a background in structural analysis.

« Later, other methods such as the variational and weighted residual

methos are also used to derive the element matrices and equations.



Step 5: Assemble the Element Equations to Obtain the Global or Total
Equations and Introduce Boundary Conditions:

* In this step the individual element nodal equilibrium equations
generated In step 4 are assembled into the global nodal equilibrium
equations.

« Another more direct method of superposition (called the direct
stiffness method), whose basis is nodal force equilibrium, can be used
to obtain the global equations for the whole structure.

* Implicit in the direct stiffness method Is the concept of continuity, or

compatibility, which requires that the structure remain together and
that no tears occur anywhere within the structure.




The final assembled or global equation written in matrix form is

(F} = |K]{d} 1)

where {F} is the vector of global nodal forces, [K] is the structure global or total stiffness matrix,
(for most problems, the global stiffness matrix is square and symmetric) and {d} is the vector of
known and unknown structure nodal degrees of freedom or generalized displacements.

It can be shown that at this stage, the global stiffness matrix [K] is a singular matrix because its
determinant is equal to zero.

To remove this singularity problem, we must invoke certain boundary conditions (or constraints or
supports) so that the structure remains in place instead of moving as a rigid body.

At this time it is sufficient to note that invoking boundary or support conditions results in a
modification of the global Eqg. (1).

We also emphasize that the applied known loads have been accounted for in the global force matrix

{F}.



Step 6: Solve for the Unknown Degrees of Freedom (or
Generalized Displacements):

 Equation (1), modified to account for the boundary conditions, is a set of
simultaneous algebraic equations that can be written in expanded matrix form as

F Ky Ky -+ Ky, d,
F> Ky Kx»n - Ky, d>

< - > = L] - < L] >
Fn Knl Kn.? Knn du

« where now n is the structure total number of unknown nodal degrees of freedom.

» These equations can be solved for the ds by using an elimination method (such as
Gauss’s method) or an iterative method (such as the Gauss-Seidel method).

* The ds are called the primary unknowns, because they are the first quantities
determined using the stiffness (or displacement) finite element method.



Step 7: Solve for the Element Strains and Stresses:

* For the structural stress-analysis problems, important secondary
guantities of strain and stress (or moment and shear force) can be
obtained because they can be directly expressed in terms of the
displacements determined in step 6.

* Typical relationships between strain and displacement and between
stress and strain for one-dimensional problems are:

__du
T dx

Ex and o, = E¢,



Step 8: Interpret the Results:

 The final goal is to interpret and analyze the results for use in the

design/analysis process.

« Determination of locations in the structure where large deformations
and large stresses occur Is generally important in making

design/analysis decisions.

* Postprocessor computer programs help the user to interpret the results

by displaying them in graphical form.



Direct Stiffness Method
(Displacement Method)



Direct Stiffness Method:

. @I rrt]a_in step of the finite element analytical process is the determination of the Stiffness
atrix.

« All the applications of FEM involves the derivation of this matrix.

 Before doing that it is helpful to layout some general ideas about the nature of this
Important matrix and the significance of the terms within it.

 The standard form of matrix displacement equation is,

(K] {u} = {F}

where [K] 1s stiffness matrix
{u} is displacement vector and
{F} is force vector in the coordinate directions

» The element kj; of stiffness matrix may be defined as the force at coordinate i1 due to unit
displacement in coordinate direction j.

. ;I;]he ditr_e?t method of assembling stiffness matrix for few standard cases is briefly given in
Is article.
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1. Stiffness matrix for a spring:

 Consider a coiled spring fixed at one end and with a force F applied at

the other.

 The force required to produce unit extension of the spring is k (N/m).

* The right direction Is positive.

 The relation between the force produced by a displacement u of the
free end of the spring is given by the relation

F=ku e (a)




* Consider the case when end 2 is fixed and end 1 is given a positive
displacement u,.

Fy
—> 0O /\/\ /\/\/\ o

‘- ul_,i

* The force at end 1 due to displacement at 1 is
F..=ku,

The equilibrium requires that an equal and opposite force at end 2 is
developed, i.e.

For=-Fpy
This means that the force at 2 due to displacementat 1 is

F,i=-ku,



* Similarly, when the end 1 is fixed while end 2 is given a displacement
U,

* The force at end 2 due to displacement at 2 is
F,,=ku,
And the force at 2 due to displacement at 1 is
F1= - ku,

* If the two ends can displaced, the resultant force at each end is the
algebraic sum of the forces developed from the two cases, i.e.

F.=F,,+F, and F,=F,, +F,,
Or,

F.=ku; -ku,
And F,=-ku; +ku,



e |n matrix form

B =L ]
FZ —k k Uy
The rectangular matrix

-

IS known as the stiffness matrix of a spring element

And is usually given the symbol [K], I.e.
K="
-k k

o wely 7]

[K] is called the local stiffness matrix for the element.



Properties of stiffness matrix:

1. Itissymmetric (that is, k;;= k;; for 1 # j). This Is proven by the

reciprocal theorem of Rayleigh and Betti.

2. lItis square (the number of rows equals the number of columns In

[K]) as it relates the same number of nodal forces to nodal

displacements.

3. Itissingular, that is, the determinant of [k] Is equal to zero, so [K]

cannot be Inverted.



Example: Determine the nodal displacements of the system of two
springs shown.

1 © 5 @ :
k, F,, & Fa
Solution:
|k -k
K= 3
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Uy Uy Uz [ (l)ﬂ [ (l)— o U us —M(z)- — (2)-
" U | 0 0 0 I lx
1 0 —1 ! * (2) (2)
(L — (1) k2 . u L= 4
ki 0 0 0 WUy v =60 ¢ 0 | | 2 2x
1 ) 0 —1 1 u'? (2)
-1 0 1 ug ) %(x) 3 3x
~ 1 - [ 7 ) )
) 0 F,
A R A IR ) S
1
I Y
(1) (2)
I 0 —1]|% 0 0 o0]|" F,
k| 0 0 0RuVt+k({0 1 —1[{u?} =3F,¢
-1 0 1 ugl) 0 —1 | ugz) F;,
kl 0 _kl u le
0 ky —ky |[Quap =1{Fxy
—kl _kz kl + kz us3 F3x
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* For this simple example, it is easy to expand the element stiffness matrices and
then superimpose them to arrive at the total stiffness matrix.

« However, for problems involving a large number of degrees of freedom, it will
become tedious to expand each element stiffness matrix to the order of the total

stiffness matrix.

 To avoid this expansion of each element stiffness matrix, we suggest a direct, or
shortcut, form of the direct stiffness method to obtain the total stiffness matrix.

 For the spring assemblage example, the rows and columns of each element
stiffness matrix are labeled according to the degrees of freedom associated with

them as follows:

U U3 Us u»



 [K ] is then constructed simply by directly adding terms associated with degrees of
freedom in [kD] and [k®@] into their corresponding identical degree-of-freedom
locations in [K ] as follows:

* The u:row, u:column term of [K ] Is contributed only by element 1, as only
element 1 has degree of freedom us, that IS, ku=ka.

* The usrow, uscolumn of [K ] has contributions from both elements 1 and 2, as the
usdegree of freedom is associated with both elements.

* Therefore, kss= ki + ko.
 Similar reasoning results in [K] as

o U 3
k0 —k i
K] = 0 ko —k> U
—k; —kr» ki tky| U3

* Here elements in [K ] are located on the basis that degrees of freedom are ordered
In increasing node numerical order for the total structure.



Boundary Conditions:

We must specify boundary (or support) conditions for structure models such as the spring
assemblage, or [K ] will be singular; that is, the determinant of [K ] will be zero, and its
Inverse will not exist.

This means the structural system is unstable.

Without our specifying adequate kinematic constraints or support conditions, the structure
will be free to move as a rigid body and not resist any applied loads.

In general, the number of boundary conditions necessary to make [K ] nonsingular is
equal to the number of possible rigid body modes.

Boundary conditions relevant for spring assemblages are associated with nodal
displacements.

These conditions are of two types:

A. Homogeneous boundary conditions—the more common— occur at locations that are

completely prevented from movement, and

B. Nonhomogeneous boundary conditions occur where finite nonzero values of

displacement are specified, such as the settlement of a support.



* In the mathematical sense in regard to solving boundary value problems, we
encounter two general classifications of boundary conditions when imposed
on an ordinary or partial differential equation or derived upon taking the
first variation of a functional.

* The first type—primary, essential, or Dirichlet—boundary condition
[named after Johann Dirichlet (1805-1859)], specifies the values a solution,
such as the displacement, must satisfy on the boundary of the domain.

 The second type—natural or Neumann—Dboundary condition [named after
Carl Neumann (1832-1925)], specifies the values that the derivatives of a
solution must satisfy on the boundary of the domain.



Homogeneous Boundary Conditions:

» We first consider the case of homogeneous boundary conditions. Hence all
boundary conditions are such that the displacements are zero at certain nodes.

In the example of spiring system we have u, = 0 because node 1 is fixed.
Therefore, the global equation can be written as

k0  —k |lo]l [£.
0 k2 _kz SU2 ¢ = o Fz"- ’
_kl —kg kl + kz L”B_ F31 ]

written in expanded form, becomes
k1 (0) + (O)ur — kjus = Fy,.
00) + kaur — kouz = F>,
—k1(0) — kauy + (ky + kp)uz = F3,
where F, is the unknown reaction and F,, and F5,are known applied loads.



* Writing the second anc

ky  —ks
—kr ki + k>

* \We have now effective

the first row of {d} and
Rule:

third In matrix form, we have

1, | Fax
s [ | By

y partitioned off the first column and row of [K] and
{F} to arrive the reduced system of equations.

« For homogeneous boundary conditions, the reduced system resulting from
application of B.Cs. could have been obtained directly by deleting the rows
and columns corresponding to the zero-displacement degrees of freedom.

K] is really multiplied

are solved for.

* In the spring system, row 1 and column 1 are deleted because column 1 of

by u, =0.

» However, F,,Is not necessarily zero and can be determined once u,and uj



Nonhomogeneous Boundary Conditions:

* In the case of nonhomogeneous boundary conditions one or more of the specified
displacements are nonzero.

* For simplicity’s sake, let u;= 6, g ® 3 @ :
where 6 is a known displacement, %5T'WE‘W/\/'E *

e We now have

ki 0 —ky S F .
0 k- _[{2 S U ¢ — A F’),L ;
—kl _kg kl + kz L“B_ _E‘S.\'J

« written in expanded form becomes
k0 + Qur, — kyjus = Fy,,
06 + khour — kouz = F>,
—k10 — kouy + (kg + ky)us = F5,
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» where F, Is now a reaction from the support that has moved an amount 5.

 Considering the second and third of equations because they have known right-side
nodal forces F,, and F, , we obtain

00 + kour — kruz = F>,
—ki0 — koua + (ki + ko)uz = F,
 Transforming the known 6 terms to the right side yields
kritr — kruz = F>,

—kouy + (kg + ko)uz = +k16 + Fiy

« Rewriting In matrix form, we have

ky  —ko u | B,
—ky ki + ko ||U3 kio + F3;,
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 Therefore, when dealing with nonhomogeneous boundary conditions, we cannot
Initially delete row 1 and column 1 corresponding to the nonhomogeneous
boundary condition, because we are multiplying each element by a nonzero
number.

» Had we done so, the k,06 term would have been neglected, resulting in an error in
the solution for the displacements.

Rule:

* For nonhomogeneous boundary conditions, we must, in general, transform the
terms associated with the known displacements to the right-side force matrix
before solving for the unknown nodal displacements.

 This was illustrated by transforming the k,6 term to the right side of the second
equation.

» We could now solve for the displacements in a manner similar to that used for
homogeneous boundary conditions.




Properties of Global Stiffness Matrix:

 Following are some properties of the global stiffness matrix that are also
applicable to the generalization of the finite element method:

1)
2)

3)

4)

9)

[K] Is square, as it relates the same number of forces and displacements.

[K] is symmetric, as is each of the element stiffness matrices. In structural
mechanics, the symmetry property in not surprising. It can be proved by using
the reciprocal laws.

[K] is singular (its determinant is equal to zero), and thus, no inverse exists until
sufficient boundary conditions are imposed to remove the singularity and
prevent rigid body motion.

The main diagonal terms of [K] are always positive. Otherwise, a positive nodal
force F; could produce a negative displacement 6, —a behavior contrary to the
physu:al behavior of any actual structure.

[K] is positive semidefinite (that is {x}' [K]{x}> O for all non-zero vector {x}
with real numbers).



Example: For the spring assemblage with arbitrarily numbered nodes shown in
figure below, obtain

(a) the global stiffness matrix,

(b) the displacements of nodes 3 and 4,

(c) the reaction forces at nodes 1 and 2, and

(d) the forces in each spring. A force of 25 kN is applied at node 4 in the x direction.
The spring constants are given in the figure. Nodes 1 and 2 are fixed.

k, = 200 N/mm ky = 400 N/mm Ky = 600 N/mm

I 3 4 P

O, @ ®



Example: For the spring assemblage shown in Figure 2—-12, obtain
(a) the global stiffness matrix,

(b) the displacements of nodes 24,

(c) the global nodal forces, and

(d) the local element forces.

Node 1 is fixed while node 5 is given a fixed, known displacement d 5 20.0 mm.
The spring constants are all equal to k = 200 kN/m.




Example: Using the direct stiffness method, formulate the global stiffness matrix and equation, and
specify the boundary and compatibility conditions.

777777,
2
O
1 ki 2
O > X
Rigid bar /

5 O ¥
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2. Bar element:

AN NAN

> 2 C > = . =

Consider the bar shown

« L, »ie L, >l L, >

Consider one part of this bar, of uniform sectional area A and modulus of
elasticity E and length L.

For such bar, the extension/shortening Is given by

A =PL/EA I MY
* From which L4 L 5
P= (EA/L) A

If end 1 is displaced by u,, while end 2 is fixed, the force at end 1 will be
F., = (EA/L) u,

The force at end 2 due to displacement at 1 is
F,, =- (EA/L) u,
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* If end 2 is displaced by u,, while end 1 is fixed,

* the force at end 1 due to displacement at 2 will be
F,, =- (EA/L) u,

* The force at end 2 due to displacement at 2 is
F,, = (EA/L) u,

* The resultant forces at the two end developed from the two displacements
will be:

F, = (EA/L) u, - (EA/L) u,
and  Fa=-(EA/L)uy +(EA/L) u,

In matrix form

ARGV I



Example:

For the three-bar assemblage shown in Figure 3-3 determine (a) the global stiffness matrix,
(b) the displacements of nodes 2 and 3, and (¢) the reactions at nodes 1 and 4. A force of
15,000 N is applied in the x direction at node 2. The length of each element is 0.6 m. Let
E=20X10"Paand A = 6 X 10*m? forelements |1 and 2, and let E = 1 X 10!! Pa and

A =12 X 10#m? for element 3. Nodes 1 and 4 are fixed.

15000 N

71®2/@3@4

‘J_

06m—-|-——[]6m—+—06m—-

1.8 m

e».\i‘i

e

ANNNNNNNNN

m Figure 3-3 Three-bar assemblage
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SOLUTION:

(a) Using Eq. (3.1.14), we find that the element stiffness matrices are

1 20
2 32
X 10742 X 10! il o
kW) =)= X107 X101 1 =1 08| P " N 3116
0.6 -1 | -1 | m
3 4
(k)] = (12 X 1074)1 X 10| 1 -1 wancqnh | 1 <IN
0.6 -1 | -1 I |m

where, again, the numbers above the matrices in Egs. (3.1.16) indicate the displacements
associated with each matrix. Assembling the element stiffness matrices by the direct stiff-
ness method, we obtain the global stiffness matrix as

u U u3 Uy

r 9

I =1 0 0
o 10 5 2 R 0
0 =1 1%+1 =]
0 0 -1 1

- -

(3.1.17)

N
[K]=2 X108 —
m
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(b) Equation (3.1.17) relates global nodal forces to global nodal displacements as follows:

-

Fix 1 =1 0 o]|m
Fh -1 2 -1 0| |u

L =2 % 108 » 3.1.18
A, 0 -1 2 —1|lw e
Fa. 0 0 -1 1]|u

Invoking the boundary conditions, we have

=0 ug =0 (3.1.19)

Using the boundary conditions, substituting known applied global forces into Eq. (3.1.18),
and partitioning equations |1 and 4 of Eq. (3.1.18), we solve equations 2 and 3 of Eq. (3.1.18)

to obtain
15000 = 2 —=1|]u
{ 0 } 2 X 108 [_l 2”“’| (3.1.20)

Solving Eq. (3.1.20) simultancously for the displacements yields
=5 x 105 m=005mm w3 =2.5 x 107 m=0.025 mm (3.1.21)

(c) Back-substituting Eqgs. (3.1.19) and (3.1.21) into Eq. (3.1.18), we obtain the global nodal
forces, which include the reactions at nodes | and 4, as follows:

Fie =2X 108w —up) =2 %1080 =5 X 10%) = =10,000 N

For =2 X 10%—uy + 2uz —u3) =2 X 1080 + 2(5 X 107%) — 2.5 X 1075] = 15,000 N
Fy =2 X 10%(=uy + 2u3 —ug) =2 X 10%[=5 X 1075 + 225 X10°%)-0]=0

Fix =2 X 10%(—u3 + ug) =2 X 10%(—=2.5 X 10~ + 0) = —5000 N (3.1.22)
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Example: The figure below depicts a tapered elastic bar subjected to an applied tensile load P at one
end and attached to a fixed support at the other end. The cross-sectional area varies linearly from A4,
at the fixed support at x = 0 to 4,/2 at x = L. Calculate the displacement of the end of the bar

(a) by modeling the bar as a single element having cross-sectional area equal to the area of the
actual bar at its midpoint along the length,

(b) using two bar elements of equal length and similarly evaluating the area at the midpoint of each,
and

(c) using integration to obtain the exact solution.

//////////////////‘{//
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Solution:

(a) For a single element, the cross-sectional area is 3A,/4 and the element “spring
constant™ is

and the element equations are

3A0 E | —1 Ul . Fl

4L | -1 -1]|lU,) | P
The element and nodal displacements are as shown in Figure 2.7b. Applying the
constraint condition U; = 0, we find

4PL PL
= 1.333
3A0E AoE

U, =

as the displacement at x = L.
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(b) Two elements of equal length L /2 with associated nodal displacements are
depicted in Figure 2.7c. For element 1, A; = 7A,/8 so

A\E  TAoE  TAGE
Ly ®L 4L

ki =

while for element 2. we have

S5Ap AE SAoE SAcE
AI = — and k2 = = =
8 L, 8(L/2) 4L

Since no load is applied at the center of the bar, the equilibrium equations for the
system of two elements is

ki —k; 0 U, F,
—kl kl +k2 —kz U2 . 0
0 —kz k2 U3 P

Applying the constraint condition U, = 0O results in

= el

Adding the two equations gives

P arL
U2 —— T —
ki TAoE

and substituting this result into the first equation results in

ky + k> 48PL
Us = = = 1.371
k» 35A0FE AoE
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(¢c) To obtain the exact solution, we refer to Figure 2.7d, which is a free-body diagram of
asection of the bar between an arbitrary position x and theend x = L. Forequilibrium,

. X
o, A=P andsince A= A(x) = Ao(l — 7—)

the axial stress variation along the length of the bar is described by

Oy

Therefore. the axial strain is

E x
EAO(I - —)
2L

Since the bar is fixed at x = 0, the displacement at x = L is given by

L L
P dx
o= ‘/‘EI dx = f :
EAO X
0 0

(1-3)

2PL . 2PL 2PL PL
[—In2L — x)]|; = =—=[In(2L) —InL] = =—In2 = 1.386
EAO 0 EA() EA() AoE
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— Exact

| ==== One element

= = Two elements

02 03

04 05 06 07 08 09 1.0
X

L

2
1.8
1.6

1.4
1.2

I
0.8
0.6
0.4
0.2

0

— Exact
==== (ne element _ :
== Two elements ...

i i i i i i i i i

0

0.1 02 03 04 05 06 07 08 09 10
X

L
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3. Truss element:

« Members of the trusses are subjected to axial forces only,

 Their orientation in the plane may be at any angle to the coordinate directions
selected.

y

A

:xé> / A

Consider a typical member of the truss with Young’s Modulus E, cross sectional
area A, length L and at angle 6 to x-axis
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|. Displacements in the direction of x-axis

(a) If end 1 is subjected to a displacement u, In the direction of x-axis,
the resulting displacement (elongation/shortening), along the member
(element) 1-2 will be

U;e = U; COSO
The axial force ( in local direction) at end 1 due to this displacement is
P,,= (EA/L) u, cos6

This force can be resolved to two components in the direction of the
global coordinates ( x and y) to:

(F,),; = P4, cosO = (EA/L) u, (cosb)?
and
(Fy)11 = Pyy sin6 = (EA/L) uy sin6 coso



The axial force ( In local direction) at end 2 due to u, Is

P,,=- (EA/L) u, cosH

Its components In the direction of the global coordinates ( x and y) are:
(F,),, = P, cosd = - (EA/L) u, (cosb)?

and
(Fy)a1 =Py sINB = - (EA/L) uy sInb cosd



(b) If end 2 is subjected to a displacement u, In the direction of x-axis, the resulting
displacement (elongation/shortening), along the member (element) 1-2 will be

U,y = U, COSO

The axial force ( in local direction) at end 1 due to this displacement is
P,,=- (EAJL) u, coso

Its components in the direction of the global coordinates ( x and y) are:
(F,), =Py, cosb = - (EA/L) u, (cosB)?

and

(Fy)12 = Py, sinb = - (EAJL) u, sinb cosH

The axial force ( in local direction) at end 2 due to u, IS

P,,= (EA/L) u, cos6

Its components in the direction of the global coordinates ( x and y) are:
(F,),, = P,, cosb = (EA/L) u, (cosb)?

and

(Fy)22 = Py, SN0 = (EAJL) u, sinb cosb



I1. Displacement in the direction of y-axis

(b) If end 1 is subjected to a displacement v, in the direction of y-axis,
the resulting displacement (elongation/shortening), along the member
(element) 1-2 will be

Vg = Vq SINO
The axial force ( in local direction) at end 1 due to this displacement is

The two components in the direction of the global coordinates ( x and y)
are:

(F,)1; = Py, c0sO = (EA/L) v, sSinB coso
and
(Fy)11 = Py sin@ = (EA/L) v, (sinB)?



The axial force ( In local direction) at end 2 due to v, Is

P,,=- (EA/L) v, sin6

Its components In the direction of the global coordinates ( x and y) are:
(F,),; = P,; cos® = - (EA/L) v, sinB cosH

and

(Fy)21 = Py sin6 = - (EAJL) v, (sin0)?



Eb?. If end 2 is subjected to a displacement v, in the direction of y-axis, the resulting displacement
elongation/shortening), along the member (element) 1-2 will be

V,9 =V, SINO

The axial force ( in local direction) at end 1 due to this displacement is
P,,=- (EA/L) v, sinf

Its components in the direction of the global coordinates ( x and y) are:
(F,), = Py, c0sO = - (EA/L) v, sinB coso

and

(Fy)12 = Py, 8in0 = - (EA/L) v, (sin0)?

The axial force ( in local direction) at end 2 due to u, Is
P,,= (EA/L) v, Sinf

Its components in the direction of the global coordinates ( x and y) are:
(F,),, = P,, cos® = (EA/L) v, sind cosd

and

(F,)22 = Py, $in0 = (EA/L) v, (sin6)?



* The resultant forces at 1 and 2 are the algebraic sum of all cases,
F., = (EA/L) u, (cosB)? + (EA/L) v, sinb coso - (EA/L) u, (cosB)? - (EA/L) v, sinb coso

Andsoon....
{“’} B [ s SHM} i)
v/ -S Cllv

Equation (3.3.9) relates the global displacement matrix {d} to the local displacement {d’ } as

{&} = [T){d} (3.3.10)

where C = cosf and S = sin#.

where

ld} = {i‘} la'} = {z} 7] = [_‘; (‘j (3.3.11)

The matrix [7] is called the fransformation (or rotation) matrix. For an additional description
of this matrix, see Appendix A. It will be used in Section 3.4 to develop the global stiffness
matrix for an arbitrarily oriented bar element and to transform global nodal displacements and
forces to local ones.
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Example: The global nodal displacements at node 2 have been determined to be u,=
2.5 mm and v, =5 mm for the bar element shown. Determine the local x

displacement at node 2.

Solution:
ur = (cos60°)(2.5) + (sin60°)(5) = 5.58 mm
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Global Stiffness Matrix for Bar Arbitrarily Oriented in the Plane:

Ay, v
ft AE — ui - -
1 =—[_l i] ' (3.4.1) ” s T
3 L 5 2
L
or
1 0
Lt =1k{d’} (3.4.2) ugifls =k

We now want to relate the global element nodal forces {f} to the global nodal displacements
{d} for a bar element arbitrarily oriented with respect to the global axes as shown in Figure 3-9.

This relationship will yield the global stiffness matrix [k] of the element. That is, we want to
find a matrix [k] such that

.flx FL[] |

< ﬁ". b = [k]< " > (3.4.3)
JS2x u
f2_v va |

or, in simplified matrix form, Eq. (3.4.3) becomes

{r} =1k1{a} (3.4.4)
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uj = uycosf + vsinf

‘ (3.4.5)
u5b = urcosf + v, sinf
In matrix form, Egs. (3.4.5) can be written as
_ul
. =[C > 0 0]<”’1> (3.4.6)
i 0 0 C S||u
V2
or as
d'} =[1"1{d} (3.4.7)
where
c S 0 0
T = 3.4.8
S P 348
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Similarly, because forces transform in the same manner as displacements, we replace local and
global displacements in Eq. (3.4.6) with local and global forces and obtain

™
| _ [C S 0 0]< Iy | (3.4.9)
£, 0 0 C S||ps
3
Similar to Eq. (3.4.7), we can write Eq. (3.4.9) as
{ry =) (3.4.10)
Now, substituting Eq. (3.4.7) into Eq. (3.4.2), we obtain
{r} =11 |{d} (3.4.11)
and using Eq. (3.4.10) in Eq. (3.4.11) yields
[T"‘]{f} = [k'|[T*]{d} (3.4.12)
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However, to write the final expression relating global nodal forces to global nodal displace-
ments for an element, we must invert [7*] in Eq. (3.4.12). This is not immediately possible
because [T*] is not a square matrix. Therefore, we must expand {d’},{ f”}, and [k’] to the order
that is consistent with the use of global coordinates even though f{, and v, are zero. Using
Eq. (3.3.9) for each nodal displacement, we thus obtain ‘ -

or

where

Similarly, we can write

uj C S 0
il _|-s ¢ o
" 00 C
wl | 00 -s
{d'} =[T1{d}
[ & 8 ©
g e 0

[T] =
00 C
0 0 -S
{r'} =111{r}

O oo

A oo

u

Vi

)

V2
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(3.4.13)

(3.4.14)

(3.4.15)

(3.4.16)



because forces are like displacements—both are vectors. Also, [k”] must be expanded to a
4 X 4 matrix. Therefore, Eq. (3.4.1) in expanded form becomes

g 10 -1 0]|"
Jv| _AE| 0 0 0 ofjvi| (3.4.17)
£, L-10 1 0[]y
' 00 0o0f|,
fZ’y ) _"'2‘

In Eq. (3.4.17), because f{, and f3, are zero, rows of zeros corresponding to the row numbers
fiy and f3, appear in [k"]. Now, using Eqs. (3.4.14) and (3.4.16) in Eq. (3.4.2), we obtain

(T1{f} = [K'T){d} (3.4.18)

Equation (3.4.18) is Eq. (3.4.12) expanded. Premultiplying both sides of Eq. (3.4.18) by [T]™",
we have

{f} = [T [¥][THd} (3.4.19)

where [T]_l is the inverse of [T]. However, it can be shown (see Problem 3.28) that
[TT! = [TT (3.4.20)
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where [T]T is the transpose of [T]. The property of square matrices such as [7] given by
Eq. (3.4.20) defines [7] to be an orthogonal matrix. For more about orthogonal matrices,
see Appendix A. The transformation matrix [7] between rectangular coordinate frames is
orthogonal. This property of [7] is used throughout this text. Substituting Eq. (3.4.20) into
Eq. (3.4.19), we obtain

{f}Y =TI [K'T{d} (3.4.21)
Equating Egs. (3.4.4) and (3.4.21), we obtain the global stiffness matrix for an element as
[k] = [T [¥][T] (3.4.22)

Substituting Eq. (3.4.15) for [T] and the expanded form of [k’] given in Eq. (3.4.17) into
Eq. (3.4.22), we obtain [k] given in explicit form by

2 ¢S -c? —CS|

[&] -2 S (3.4.23)
L c?2  CS
Symmetry S?

U of Bsarah - D of Civil Eng Dr Abdulamir Atalla 2022



Equation (3.4.23) is the explicit stiffness matrix for a bar arbitrarily oriented in the x — y plane.

Now, because the trial displacement function Eq. (3.2.6) and Figure 3—-5 was assumed
piece-wise-continuous element by element, the stiffness matrix for each element can be
summed by using the direct stiffness method to obtain

N

Y [k@] = [K] (3.4.24)

e=1

where [K] is the total stiffness matrix and N is the total number of elements. Similarly, each
element global nodal force matrix can be summed such that

N

Y (@) =(F) (3.4.25)

e=1

[K] now relates the global nodal forces {/'} to the global nodal displacements {d} for the
whole structure by

{F} = [K]{d} (3.4.26)
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« Example: For the truss shown, 8, = /4, 8, = 0, and the element properties are such that k,=4,E,/L,
, k, = A, E,/L, . Transform the element stiffness matrix of each element into the global reference
frame and assemble the global stiffness matrix.

Solution:

201 -1 =1 1 1
-1 =1 1 1

O 0 0 0

~

[K?] =k,

O 0 0 0
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1 2 5 6 5 & B 8

- - 22 1@ @ 1]
k(lll) k(llz) k%) k(lz) | 1‘11 1‘12 1‘13 /‘14
(2) (2) (2) (2)
(1) (D () (D ) k k k Kk
k' k k k ps @1 21 22 23 24
KP1=1 o 0 o o] s i g B2 e kg
ky)  kyp kyz o k3 | - 32‘ 33 3;: 3‘2‘
(M L (1 0|6 k2 (D (2 Q)
_/‘41 1\42 /\43 /\44 g - 41 42 43 44

The complete global stiffness matrix is then

T k2 k/2 0 0 —k /2  —k /2]
k2 kJ2 0 0 —kJ2 —k/2
0 0 ky 0  —k 0
(K] =
0 0 0 0 0 0
k2 B2 % 0 EPRvE k2
| —ki/2 —k/2 0 0 k)2 ki/2
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Computation of Stress for a Bar in the x —y Plane:

We will now consider the determination of the stress in a bar element. For a bar, the local forces
are related to the local displacements by Eq. (3.4.1) or Eq. (3.4.17). This equation is repeated v 4
here for convenience.

Ji :A_LE[ : ‘:] & (3.5.1)
Jix B

/
u

The usual definition of axial tensile stress is axial force divided by cross-sectional area.
Therefore, axial stress is

Jix
A

(3.5.2)

0':

where f7, is used because it is the axial force that pulls on the bar as shown in Figure 3—11.
By Eq. (3.5.1),

AE ’
fe=22-1 114" (3.5.3)
L u

Therefore, combining Egs. (3.5.2) and (3.5.3) yields
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E :
{o} = =|-1 1|{d"}
L
Now, using Eq. (3.4.7), we obtain
E ,,
fo} = — -1 1][T*]{d}
Equation (3.5.5) can be expressed in simpler form as

{o} = [C'{d}
where, when we use Eq. (3.4.8) for [T* ],

SRR

After multiplying the matrices in Eq. (3.5.7), we have

E
C1==[-C =S C S
[C7] L[ |
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(3.5.6)

(3.5.7)

(3.5.8)



Derivation of Finite Element
Equations by Variational
Methods



Derivation of FEM Equations
For One Dimensional Elements



Interpolation functions:

* One of the main ideas In the finite element method is to describe the variation of
the field variable ( e.g. the displacement) throughout the element by a trial
approximate functions.

 This implies that since it is difficult to find a closed form or exact solution, we
guess a solution shape or distribution of displacement by using an appropriate
mathematical function.

* In choosing this function, we must follow the laws, principles, and constraints or
boundary conditions inherent in the problem.

« The most common functions used are polynomials.



The Linear Element:

* The one — dimensional element is a line segment with a length L and two nodes,
one at each end.

» The nodes are denoted by I and j and the nodal values (values of the field variable,
e.g. displacement, heat, ..) are ®i and .

 The origin of the coordinate is to the left of node 1.
 The field variable ¢ varies linearly between the two nodes.
* The equation for ¢ is

0= aq + azx (1) ‘)/‘T

¢
A

The coefficients a; and a, can be determined r %
by using the nodal conditions; l R . l .
a.t X= Xi Q= (Di r—xi—)L—L——:-

atx:Xj ¢=CI>j



* from which
d. = aq + ClzXl'

1

And (DJ = a4 + asz

Solving for a,and a, yields,
_ (Din—(Dinzq)in—(Din and a, = (D]—(D] =(D]—(D]

aq
Xj— X L Xj— X L

Substituting for a,and a, in the equation of ¢ results;
(I)lX]—(I)]Xl (D]_(Dl
0= +

p X (2)
« Re-arranging the terms gives;
Xi— — X;

0= (<) O+ (—H D (3)

Equation (3) is the standard finite element form.
The nodal values are multiplied by a linear functions of x.
These functions are called shape functions or interpolation functions.



 The shape functions are usually denoted by N with a subscript to indicate the node with
which a specific shape function is associated, I.e.

_x—=X;

N; = and  N; = -

 Thus, equation (3) will be

@=N; ®; +N; O; (4)
or in matrix form as

¢ = [N]{®} (5)

where [N] =[N; N;] Isarow vector of shape functions, and

OF i :
and {®}= {(Dj‘} usually writtenas {®}T={®; @;} IS a column vector of element

nodal values.



Properties of shape functions:

*« Atx =X, N;=10and N;=0
* Atx =X, N;=0and N;=1.0
At any x within the element N; +N; =10

 The shape functions are polynomials of the same type as the original interpolation

equation, I.e. eq. (1).

, AWy | dlvy)
dx T dx

=0




Example: A one dimensional linear element is used to approximate the temperature
distribution on a steel rod. The solution indicates that the temperature at node i= 120 and at
node j= 90°C. Determine the temperature at a point 4 cm from the origin and the
temperature gradient within the element. Nodes i1 and j are located at 1.5 cm and 6 cm from

the origin, respectively.
Solution:
The field variable ¢ is the temperature.

®=Ni(pi+Nj(Dj

Xj—x _ 6—x x—X;i _x—-15

N; = = and N; = =
L 4.5 L 4.5
®; =120 and ®; =90
Thus, @=6_—x X 120 + x_1'5><90
Atx=4.0cm, ¢ === 2 x (120)+4 —% % 90 =103.333°C

The temperature gradlent IS the flrst derivative of ¢
do/dx = <1 o, + —fcp = (-1/L) @; + (/L) @; = (@; - ;)/L = (90-120)/4.5 = -6.667°C/cm




A continuous piecewise smooth equation:.

 This equation can be constructed by connecting several linear equations of the

elements.

« Each equation can be written as
3@ =N ; +N 0, (6)
 The superscript (e) indicates that the term is for an element (element term).

 Then, substitute the values of i and j for each element from the grid.

* Node 1 is the left hand of each element.



For example:

* The bar shown is discretized to four elements.
 The information of the grid is listed in the table.

* The equations for the element are:

oD = N1(1) D, +N2(1)CI)2
p(2) = NZ(Z) @, +N3(2)CD3
p(3) = N3(3) @, +N£3)CD4

@(4‘) — N4(‘4) (D4 +N5(4)(D5

AW IN|F|-—

P TWIN|[F]|®D

NP | WIN|—
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- Note that Nz(l) and NZ(Z) are different equations, even though both involve node two, their
equations are
X1

NY = 222 ang NP = 257X
Xo—Xq X3—X,

« Each one of the equations of @ is applicable for one element only.
« For example, the first equation should be considered as

P = N1(1) ®, +N2(1)q)2 X1 =X = X
 The superscript (e) usually does not have to be placed on each coefficient.

« When a brackets or parentheses have a superscript (¢), i.e. (G @ + Q)®, then every term
within the parentheses should be interpreted as an element term.

A guantity on the left hand side of an equal sign with a superscript (e) implies that the
quantities on the right hand side are element quantities, i.e.

(D(e) — Ni (Di +]Vj (D]

implies that N; and N; are really N and Nj(e), respectively, and ®; and ®; are the
element nodal values.



Shape Functions in Local Coordinates System:

 The shape functions in global coordinate system are:

Xi—x — X
N =24 and N, =2—%
L L J L

In local coordinates system, X; = 0,and X; = L

This yields, N; = L;Lx =1-2 and N, ==

Using the non-dimensional local coordinate, s = x/L then
N; =1-5s and N; =s

In natural coordinate, & in which
E=-1latnodeliand & =+1 at node |

N;=-(1-8) and N =-(1+&)



Finite Element Formulation of Axial Force Members:

 Finite element method is applicable to the analysis of both discrete and continuous

structures.

* Discrete structures are those with individual members such as trusses, beams, and

rigid frames.

 Continuous structures are plate and shell type structures as well as structural

components that must be analyzed using the theory of elasticity.

 The analysis of both discrete and continuous structures can be approached from

several points of view, such as the weighted residual and variational methods.



One dimensional model:

 The finite element grid for a system of axial force members consists of a straight

line segment with nodes wherever there is:
a) A change in the material properties,
b) A change In cross section, or
c) There is an external force.

* Nodes are added at points of application of external forces to simplify the

calculation of the work term in the potential energy equation.

» The work will be a force times the displacement.



Finite element grid:

« A major difference between the grids for axial force members and other one
dimensional problems (such as heat transfer) is the concept of grid refinement.

« A finite element solution for the displacement in a discrete structures yields the
correct values.

* No improvement is obtained by subdividing each member into several smaller
elements.

« Each member is represented by a single element except when there are applied
load or change in properties between end points.

« The quantities calculated in a FEA of discrete or continuous structure are
displacements.

* The node displacements and externally applied forces are often indicated using
arrows.



Finite Element Formulation:

« Few elements can be formulated using the direct method, as applied to bars and
beams.

* In general, formulation of elements for structural mechanics relies on long
established tools of stress analysis, including stress — strain relations, strain-
displacement relations, and energy equations.

Stress-Strain Relations. Let {o} be the array of stresses and {e} the array of strains.

Subscripts zero indicate initial values. Constitutive matrix [E] contains elastic constants.
For linearly elastic conditions, stress-strain relations can be stated in the matrix forms

{oc} = [El{e} + {ag} or {o} = [El({e} - {eg])
where {og} = —[E]{&g} (3.1-1)

This relation is valid in one, two, or three dimensions. For a uniaxial stress state, with no
initial stress, it is simply o = Eeg, where E is the elastic modulus. In two dimensions, with

x and y as the in-plane coordinates, Eq. 3.1-1 is



Stresses = Constitutive matrix X Strains +  Initial stresses

Ty Ey Eyy Eqg Ey ’—O-xO
(3.1-2)
| Ty | _E31 E3 E33J | Yy | | Txy0

Constitutive matrix [E] is symmetric; E; = E;. [E] can represent isotropic or anisotropic
material properties. For isotropy and plane stress conditions (o, = 7, = 7,, = 0), [E]
and 1ts inverse are

— — e —

E 1 v 0 1/E —v/E 0
[El=—|» 1 0 EI'' = |-wE 1/E 0 (3.1-3)
=710 oa-wr2 0 0 /G

where v is Poisson’s ratio and G = 0.5E/ (1 + v) is the shear modulus.



Inverting eq. (3.1-1) yields,

General form: For isotropy and plane stress conditions:
e = o0/E—- vay/E+ &,0
{e} = [E]_l{o'} + {g} &, = —vax/E+‘0y/E+ £50 (3.1-4)

Yy = 'rxy/G + Y10

Initial strains {g;} may have various causes, including temperature change and swelling
due to moisture or radiation. If convenient, in order to account for initial effects from the
simultaneous action of two or more sources, {&;} and {oy} can both appear in the stress-
strain relation. If the material is isotropic and initial strains are produced by temperature
change T, then &, = &4 = aT and v,y = 0, where a is the coefficient of thermal
expansion, here assumed to be independent of temperature. Temperature T is measured
relative to a reference temperature, perhaps room temperature, at which the body may be
regarded as free of stress.
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In three dimensions, [E] is % symmetric 6 by 6 array that relates stresses {o} =
|0, 0, 0, T, T, T,| andstrains {e} =| &, & & Y, Yy, Vul-
For the case of isotropy and initial strains caused by temperature change 7, nonzero entries
in [E] and {g,} are

-

Eyy = Eyp = E33 = (1-v)c £y = aF
Ey=FEs=E(=G £y = al (3.1-5a)

Ep = Eyy = Eyy = Eg) = Ep3 = Eyp = wc €0 = al

E E

~aay M C (3.1-5b)

where C
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Strain-Displacement Relations. A displacement field describes how a body deforms as
well as how it displaces. Strain-displacement relations extract the strain field contained in
a displacement field and play a prominent role in formulating commonly used elements.
To obtain formulas, we use engineering definitions of strain. Normal strain is change in
length divided by original length; shear strain is the amount of change in a right angle.
Deformations shown in Figure below provide formulas shown for strains Ey> Eys and Yxy in the

xy plane.

Au _ Av . _ Au, Av

=T Ax == Ay Ay VoT By *Ax
—= l—<— —> Au
A ]—————————_——‘iL """"" -7
— :  ——_— i
Ax : Ax 1\ ‘i‘r Ax 'l'
1 ]
| ! /
1 ! !
!
&y : A}, ‘A_;:"_.-ED- jl-.;‘_‘ ‘r
'
1: :, Ay Qv ’I Av
, 1 &"“x #_'_4’_
I f e
— 1 = f. 4\

(a) ) (c)
Figure 3.1-1. An infinitesimal rectangle, subjected to (a) x-direction normal strain, (b) y-direction
normal strain, and (c) shecar strain.



In general, x-direction displacement u and y-direction displacement v are func-
tions of the coordinates; ¥ = u(x,y) and v = wv(x,y). Therefore, we must use partial
derivatives. Doing so, and letting Ax and Ay approach zero, we obtain the rwo-dimernsional
strain-displacement relations

du o _ du  dv

£ = a"—-'x Ey = gy" '}’Iy = 54‘8—1’_ (31-6)

Subsequently it will be convenient to use a comma to denote partial differentiation with
respect to the subscript that follows. In this notation, Egs. 3.1-6 are

(3.1-7)



In three dimensions, displacements in coordinate directions x, y, and z are u = u(x,y,2),
v = v(xyz),and w = w(x,y,z), and Eqs. 3.1-7 are supplemented by the relations

£, = W, Yyz v,, + W, Yoo = Wiy + Uy, (3.1-8)
In matrix operator format, for 2D and 3D cases respectively, the strain-displacement
relations are

]

o
o
- . x o Z o
2 . 2y
£, ox Y o a U -
F7 ) 82 0 5—
& = 9 Jl } ) | — z 11 o (3.1-9)
v 0
oy | L# Yoy 2 9 ¢) w
Yxy ) y oy Jx
| dy Ox | - o 2 J
L Vzx dz OJy
o d
15z 0 ax

Symbolically, for both of Eqs. 3.1-9 and for strain-displacement relations in general, we
write

{e} = [Jl{u} (3.1-10)



Equilibrium Equations. Figure below shows stresses that act on a differential element in
a two-dimensional problem. In rectangular Cartesian coordinates, we now develop equa-
tions stating that the differential element is in equilibrium under forces applied to it.
Forces come from stresses on the sides and from body forces.

T oy + 0y, dy
o Tryt Tayy dy
‘ F, N 7o+ Tay,zdx
a.-l
——m B —
F, O+ 0y dx
dy
) N
q

Try l
gy
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Body forces, F, and F, in x and y directions respectively, are defined as forces per unit
volume, positive when acting in positive coordinate directions. Body forces can be pro-
duced by gravity, acceleration, a magnetic field, and so on. On each differential element of
volume (dV = tdxdy, wheret = thickness), F, and F, produce differential forces F, dV
and Fy dV. In general, body forces and stresses are functions of the coordinates. Thus, for
example, o , is the rate of change and o, , dx is the amount of change in o, over distance
dx. For uniform thickness ¢, static equilibrium of forces in the x direction requires that

~0tdy - Tt dx + (0, + 0, dx)tdy + (7, + 7, dy)tdx + Ftdxdy = 0 (3.1-11)
dox OTxy

ox’ 0x

There 1s a corresponding y-direction equation of equilibrium. After simplification, the dif-

ferential equations of equilibrium for a plane (2D) problem are as follows. For reference,
analogous equations for a solid (3D) problem are also stated here.

where o, , = and Ty, , =
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2D: 3D:

x direction: Ot ToyyTF, =0 S S =0
y direction: L o-y yHF, =0 Tayx ¥ Oyyt Ty T Fy = 0 (3.1-12)
z direction: (not used) Toxx ¥ Tyzy T 0+ F, =0

Although derived for static conditions, Egs. 3.1-12 can also be used if acceleration is
present, provided that F,, F,, and F, include d’Alembert or “effective” body forces per
unit volume. For example, if there is x-direction acceleration a,, then F, must include the
inertial force term —pa,, where p is the mass density. Whether in two dimensions or
three, equilibrium equations can be symbolized as

[@17{c} + (F} = {0} (3.1-13)

where [d] is given in Egs. 3.1-9 and, in 2D and 3D rectangular Cartesian coordinates
respectively, {F} is | F, FyJT or| F, F, FZJT.
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Boundary Conditions. Boundary conditions include prescriptions of displacements or
stresses on sides or surfaces of a body. For example, in the plane problem of figure below
the rigid support implies that « = v = 0 along the left side. Stress boundary conditions
prevail along the remaining sides: 7, = 0 and o, = - p along the top side, o, = 0
and 7, = 0 along the right side, and ¢, = 0 and 7,, = 0 along the bottom side.

11115

i
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In general, distributed load can act tangent to a boundary as well as normal to it. On any
boundary, including one not perpendicular to a coordinate axis, normal and tangential
loads can be expressed as surface tractions, which are forces per unit of surface area,

directed parallel to the coordinate axes. In rectangular Cartesian coordinates xyz, surface
tractions {P} are

D, ] e, =lo,+m7, +n7,
(D} = < <I)y> where (I)y = l"'xy+m‘7y+”7yz (3.1-14)
D, ®, = Ir, +mT,,+n0,

in which /, m, and » are direction cosines of a vector normal to the surface. When Eqgs. 3.1-14
are satisfied, each differential element of the surface is in equilibrium under the action of sur-
face tractions and internal stresses (evaluated at the surface). Such is also the case on a por-
tion of the boundary where displacements rather than tractions are prescribed, but tractions

applied by a support are not known a priori and are usually not calculated in the course of a
solution.



Exact and Approximate Solutions. An exact solution must satisfy compatibility, equi-
librium, and boundary conditions. For example, if we begin with a compatible displace-
ment field, we can obtain strains from Eq. 3.1-10 and then stresses from Eq. 3.1-1. If these
stresses satisfy Eq. 3.1-13 at every point throughout the volume of a body, and all bound-
ary conditions are satisfied, then we have obtained the exact solution of the mathematical
model (which is subject to basic assumptions such as linearity of the stress-strain relation
and smallness of displacements). This 1s easy to say but difficult to do. Exact solutions are
known only for simple combinations of geometry, loading, and support conditions.

Finite element based on displacement fields do not satisfy equilibrium conditions at
every material point. Instead, displacement-based elements satisfy egs. 3.1-13 and
3.1-14 in an integral or average sense.



Other Problems. The foregoing formulas of structural mechanics have counterparts in
other areas. Details appear as needed in subsequent chapters. Here we briefly compare
basic equations of structural mechanics and heat conduction. First we note that heat con-
duction is a scalar problem because the field quantity, temperature 7, has no direction
associated with it. In contrast, the displacement field of structural mechanics is a vector
field having components in coordinate directions. The following list is for static (steady-
state) conditions:

Quantity Structural mechanics Heat conduction

Independent variables Coordinates x, y, z Coordinates x, y, z
Dependent variable(s) Displacements u, v, w Temperature T

. : . T
Field gradient Strains &,, &, ¥y, €tc. {(VT} = [_T,Jr T,, T ’zJ
Constitutive matrix Elastic constants [E] Thermal conductivities (K]
Induced field Stresses {0} = [El{&} Heat fluxes {f} = —[«]{VT}
Surface load Tractions {@®} on boundary Normal flux f,, at a boundary
Internal load Body forces F,, F,, F, Internal heat generation Q

Equilibrium equation (017 {o} + {F} = {0} fox tfyy +f—Q =0
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Interpolation and Shape Functions:

 The interpolation is to devise a continuous function that satisfies prescribed
conditions at finite number of points.

* In FEA, the points are nodes of an element, and the prescribed conditions are
nodal values of a field quantity ( and perhaps its derivatives as well).

» Nodal values are rarely exact, and even when they are, interpolation generally
provides approximate values at other locations.

* In FEA, the interpolating function is almost always a polynomial, which
automatically provides a single-valued and continuous field.

* In terms of generalized DOF a;, interpolating polynomial with dependent variable
@ and independent variable x can be written in the form:

b = Eaixi or d = | X |{a} (3.2-1a)
i=0



In which
2 T
| X | = \_1 X X x"J and {a} = [_ao a, a, anj (3.2-1b)
where n = 1 for linear interpolation, n = 2 for quadratic interpolation, and so on. The g;

can be expressed in terms of nodal values of ¢, which appear at known values of x. The
relation between nodal values {¢,} and the aq; is symbolized as

{b,} = [Al{a} (3.2-2)
where each row of [A] is | X ] evaluated at the appropriate nodal location (examples fol-
low). From Eqgs. 3.2-1 and 3.2-2 we obtain {al=[Al" {D} {9)=[X] [AI'* {@.}

¢ = [N}  where [N]=|XJA]! =[N Ny o] (3.2-3)

An individual N; in matrix | N] is called a shape function. The name basis function is
sometimes used instead. Each N, states the interpolated ¢ = ¢(x) when the correspond-
ing ¢, is unity and all other ¢, are zero. In FEA, assembly of elements causes element
nodal values {¢,} to appear in {D}, the global vector of d.o.f. Thus, in FEA, {¢,} for each
element is determined by solving global equations [K]{D} = {R}.
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Degree of Continuity. Field quantity ¢ is interpolated in piecewise fashion over an FE
mesh. That is, each “interpolation piece” is defined only within its element. So. while ¢
can be guaranteed to vary smoothly within each element, the transition between elements
may not be smooth. The symbol C™ is used to describe the continuity of a piecewise field.
A field is C™ continuous if its derivatives up to and including degree m are interelement-
continuous. Thus, in one dimension, ¢ = ¢(x) is C° continuous if ¢ is continuous but ¢, .
is not, and ¢ = &(x) is C' continuous if both ¢ and ¢,, are continuous but ¢,,, is not.

* In general, it Is necessary that derivatives of @ of degree m be included as nodal
DOF if field @ is to be C™ continuous.

« The C™ terminology is also applied
to element type.

* Usually, C° elements are used to
model plane and solid bodies.

* C' elements are used to model
beams, plates, shells, thus providing |

d¢
dx
ddq

e

—— . ———

b2

dé,
dx

Inter-element continuity of slope. 0 a x 0 a



C' Interpolation. We begin with linear interpolation between points (x;,¢,) and (x,,¢,),
for which | X| = [1 xJin Eq. 3.2-1. Evaluating | X] at points 1 and 2, we obtain

¢ a B
{ 1}= [A]{ 0} where  [A]=| ! 324) I~ "=
b, a I x, 7} w- 2
Inverting [A] and using Eq. 3.2-3, we obtain ﬂ - {i}

P -

- Xy~—X X=X —_—d
A] = L |2 ™ and |[NJ=|22 ‘ (3.2-5)L_
xz‘xtL—l 1 Xy=Xp Xp=X ’

The two linear shape functions N; and N, are shown in the figure. This example displays
the simplest interpolation used in FEA. In formulating properties of a two-node element of
length L, we willuse x; = 0,x, = L, and nodal d.o.f. ¢, and ¢,.
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Quadratic interpolation fits a parabola to the points (x,¢,), (x5,9,), and (x3,¢3). These
points need not be equidistant. Now 1X] =11 x 2] and Eq. 3.2-2 becomes

> = [A]lsaq; where [A] = '

-
()

5 w
1 x; xi
2

1 x, x4

;s
lx3 X3

(3.2-6)

Equation 3.2-3 yield [N], whose individual shape function are shown below.

Xy X2 X3 ~ b /\1\
1 N,
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rtbl 1 .
& s ¢=INI< &, :

_xy - 03 - x)

(xp = X)(x3 — X)

(xz = x)(x3 = xy)

(1 — x)(xa — x3)

_(n = x)0e — x)
(%3 — x3)(x2 — X3)




Results shown in Fig. 3.2-2 can be regarded as particular instances of Lagrange’s inter-
polation formula, which provides the following shape functions for a curve fitted to ordi-

nates at n points.
(xz-x)(xS—X).u(xn—X) (xl—x)(x3—x)...(xn__x)
) , M= , (327
(Xg = %) (x5 = X))+ (%, — X)) 27 (%) = %) (X = Xp) o+ (X, = X,) etc.  (3.2-7a)

N,

or more generally

(x) = x)(xy = %)+ [x, = x] -+ (x, — X) (3.2-Tb)
(x1 = x) (xg = xp) - Dxg = X ]+ (%, — x3)

Nk=

* In which the bracketed terms are omitted to obtain the kth shape function.
« For linear interpolation, N’s and x’s having subscripts greater than 2 do not appear.

 For quadratic interpolation, N’s and x’s having subscripts greater than 3 do not
appear; and so on.
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* The foregoing shape functions have the following characteristics:

« All shape functions N;, along with function ¢ itself, are polynomials of the same degree.
* For any shape function N;, N; = 1 whenx = x;and N; = 0 when x = x; for any
integer j # i. That s, N, 1s unity at its own node but is zero at other nodes.

l
Eq. 3.2-3, because we must obtain ¢ = 1 when {¢,} is a column of 1’s.

o CY shape functions sum to unity; that is, ZN . = 1. This conclusion is implied by

 Lagrange’s interpolation formula uses only ordinates @; In fitting a
curve.

 Slope information Is not used, so Lagrange interpolation may display
slopes other than those desired.



C! Interpolation: Use of both ordinates and slopes (Hermitian interpolation) is C?
Interpolation.

 Consider a cubic curve @ = @(x), whose shape is determined by four data items.

* These items are ordinates @; and small slopes (d®/dx);at either end of a line of
length L.

1X] =11 x «x? x3], and upon evaluating @ and @,, at x= 0 and x= L,
leads to:

®= a, + ax + a,x? + azx?
To determine the coefficients a;, the values of @ and @,, at two ends are used.
1. Atx = X1 ,@ = @1 '[hUS,

O, = a, + ayx; +ayx® +a;x;’ --- (A1)



90 _

2. At x = X1 ) A ( )1 thUS,

10

—=a+t 2a,x + 3azx?

( )1— a; + 2a,x; + 3asx,° ---(A2)
3.Atx = x,,0 =0, thus,

Dy = a, + a1xy + arx,% + agx,° --- (A3)
2. At x = 2,6(2)_ ( )2 thUS,

ox

( )2— a4 + Zaz.X'z + 3a3X2 “'(A4)



To simplify the equations, use the local coordinates,
x, = 0, and x, = L, this reduces the equations to

®1_ Ao
( )1—

@, = a, + a;L + a,L* + a3L’

(%)2: aq + ZazL + 3a3L2

In matrix form:

((251\

( )1
(?52

L( )2}

O RO -

R~ O

0 0
0 0

12 I3
2L 3L2]

— (B1)
—(B2)
— (B3)
—(B4)

(3.2-8)



 The shape functions can be found by using Eqg. 3.2-3,
¢ = INl{¢,} where |[N]=[XJAI"' =[Nt N ] (323)

 These produced four shape functions turn out to be the four lateral displacement of
a beam element.

x=0 x =L Atx =0 Atx =L
L S
Ni Ni,.x Ni Ni,x
3x2 2x3
T~ | m=1-3+F 1 0 0 0




Formulation of Finite Element Equations:

Strong and weak forms:
 Differential equations, are strong forms of the governing system of equations.

* The strong form, in contrast to weak form, requires strong continuity on the
dependent field variables (the displacements, temperature, ..)

« Whatever functions that define these field variables, they have to be differentiable
up to the order of the differential equations that exists in the strong form of the
system equations.

 Obtaining the exact solution for a strong form of the system equation is usually
very difficult for many engineering problems.

* The finite difference method can be used to solve equations of the strong form to
obtain an approximate solution.

 However, the method works well for problems with simple and regular geometry
and boundary conditions.




A weak form of the system equations is usually created using one of the following widely
used methods; energy principle, and weighted residual method.

The energy principle can be categorized as a special form of the variational principle
which is particularly suited for problems of the mechanics of solids and structures.

The weighted residual method is a more general mathematical tool applicable, in
principle, for solving all Kinds of partial differential equations.

The weak form is often an integral form and requires a weaker continuity on the field
variables.

Due to the weaker requirements on the field variables, and the integral operation, a
formulation based on a weak form usually produce a set of discretized system of
equations that give much more accurate results, especially for problems of complex
geometry.

Hence, the weak form is preferred by many for obtaining an approximate solution.

The finite element method is a typical example of successfully using of weak form
formulation.



Energy Methods to Derive Element Equations:

* One of the methods often used to derive the element equations and the stiffness matrix for
an element is based on the principle of minimum potential energy.

 This method has the advantage of being more general than the direct equilibrium method
which involves nodal and element equilibrium equations along with the stress/strain laws
for the element.

 Thus the principle of minimum potential energy is more adaptable to the determination of
element equations for complicated elements.

« Complicated elements are those with large numbers of degrees of freedom such as the
plane stress/strain element, the axisymmetric stress element, the plate bending element,
and the three-dimensional solid stress element.



 The principle of virtual work is applicable for any material behavior, whereas the
principle of minimum potential energy is applicable only for elastic materials.

« However, both principles yield the same element equations for linear-elastic
materials.

 The principle of minimum potential energy, being included in the general category of
variational methods (as is the principle of virtual work), leads to other variational
functions (or functionals) similar to potential energy that can be formulated for other
classes of problems, primarily of the nonstructural type.

» These other problems are generally classified as field problems and include, among
others, torsion of a bar, heat transfer, fluid flow, and electric potential.

« Still other classes of problems, for which a variational formulation is not clearly
definable, can be formulated by weighted residual methods.

» These methods include Galerkin’s method, collocation, least squares, and the
subdomain weighted residual methods.




Fomulation of Anite Hement Matnices Using Castigliands Hrst Theorem

Castigliano’s First Theorem:

“For an elastic system in equilibrium, the partial derivative of total strain energy
with respect to deflection at a point is equal to the applied force in the direction of
the deflection at that point.”

A Lﬂ"r(»
A,

- [

 The first theorem of Castigliano is a powerful tool for finite element formulation.
 For example, the total strain energy for the bar element is given by



* Applying Castigliano’s theorem with respect to each displacement
yields

U, AE
a, L=
aU, AE
wy LT E L

U of Bsarah - D of Civil Eng Dr Abdulamir Atalla 2022



Example: A solid circular shaft of radius R and length L is subjected to constant
torque T. The shaft is fixed at one end, as shown in the figure below. Formulate the
elastic strain energy in terms of the angle of twist 8 at x = L and show that
Castigliano’s first theorem gives the correct expression for the applied torque.

Solution:
From strength of materials theory,
the shear stress at any cross section along the
length of the member is given by Tr
T
where r is radial distance from the axis of the member and J is polar moment of
Inertia of the cross section.
. . I'r
For elastic behavior, we have V= —_= —

G JG
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where G Is the shear modulus of the material, and the strain energy Is

then , l - 1 - o Ty Tr L
Lv‘t, = S/T'y dV = 5/ / (7)( 7G ) dA [dx
A

v 0

14
T [, . T
= 272G Eebidady

0 A

where we have used the definition of the polar moment of inertia

J :frsz

A

The angle of twist at the end of the member is known to be
so the strain energy can be written as

TL
Y=17G
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so the strain energy can be written as

| L JGH)E_JGBE
EJG( L) 2L

e

{)'Iire —

And applying Castangliano’s first theorem,

U, JGO
00 L

which iIs exactly the relation shown by strength of materials theory.



Example: (a) Apply Castigliano’s first theorem to the system of four spring elements
depicted in figure to obtain the system stiffness matrix. The vertical members at
nodes 2 and 3 are to be considered rigid.

(b) Solve for the displacements and the reaction force at node 1 if:
Ki=4N/mm k,=6N/mm k;=3N/mm F,=-30N F;=0 F,=50N

ks

é AW~

é'—J\MMF o F, |—WW—o0 > [,
40 AW~ SO
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H Solution
(a) The total strain energy of the system of four springs is expressed in terms of the

nodal displacements and spring constants as
1 | | . 1 g
Ue = Ekl(Uz—Ul)"-i-Z Ekz(U.%—Uz)" g i 5/\’3((/4—(]3)"

Applying Castigliano’s theorem, using each nodal displacement in turn,

ol Fi = ki(Uy — U)(—1) = k) (U — U»)

su, 1=k 1 = ki (U, 2

oU,

3[] ":F2Zkl(UQ—U1)+2k2(U3_U2)(_1)=—klU]+(k|+2k2)U2—2k2U3

L.

0. F3; = 2k(Uz — Uz) + k3(Us — Uz)(—1) = —2kU; + (2kz2 + k3)Us — k33U,
3

all,;

: = F4 = k3(Usy — U3) = —k3Us + k3U,

oU,
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which can be written in matrix form as

| & —K, 0 O 11U ] [ F} ]
—ky  ky + 2k —2k> 0 { U, - F> }
0 —2k» 2k, + ks —kj U; F;

L. 9 0 —K3 ks 1 LUy | | Fy |

and the system stiffness matrix is thus obtained via Castigliano’s theorem.

(b) Substituting the specified numerical values, the system equations become

[ 4 - 0 g 10" | [ Fj
-4 16 —-12 O { U, - —30 |
0 —12 15 —3 Us 0

Y 0 =3 > 1 U8, ] . k) |

Eliminating the constraint equation, the active displacements are governed by

16 —12 0 Ui —30
12 15 3|{u;8=1 o
% -3 3 U, 50
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which we solve by manipulating the equations to convert the coefficient matrix
(the stiffness matrix) to upper-triangular form; that is, all terms below the main
diagonal become zero.

Step 1. Multiply the first equation (row) by 12, multiply the second equation (row)
by 16, add the two and replace the second equation with the resulting equation to

obtain: _
16

O
0

—12

96
-3

0
—48
3

i

U,
Us
U,

-

—30
—360

50

Step 2. Multiply the third equation by 32, add it to the second equation, and replace
the third equation with the result. This gives the triangularized form desired:

[ 16
0
0

—12
96
0

0
—48
48

U,
Us
Uy

—30
= { —360
1240

U of Bsarah - D of Civil Eng Dr Abdulamir Atalla 2022



In this form, the equations can now be solved from the “bottom to the top,” and it
will be found that, at each step, there is only one unknown. In this case, the
seguence Is:

U=—> = 25.83mm

ugzi [—360 + 48(25.83)] = 8.17 mm
U= [30 +12(9.17)] = 5.0 mm

The reaction force at node 1 is obtained from the constraint equation
F,=—-4U,=-4(5.0)=—20 N,

and we observe system equilibrium since the external forces sum to zero as
required.



Example: Repeat the solution of the previous example by using the principle of

minimum potential energy.

Ki=4N/mm k,=6N/mm k;=3N/mm F,=-30N F;=0 F,=50N
k

,2 2
P— AN —91< F, |—WW—o0 > [,
40 « AV~ SO
@ k> ©)
Solution:
The total potential energy is given by the equation:

N=U,—W
The elastic strain energy is
1 1 1
Ue = Ekl(UZ — Up)*+2 [zkz(Us — Uz)zl + Eks(U4 — U3)?
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and the potential energy of applied forces is
Up = —W = —F,U, — F,U, — F;U; — F,U,
Hence, the total potential energy Is expressed as
Ve = 32Uy = U2 [3KaUs = 02| 4 3 ks(Us = Ul = Fyb = Fyls = Ry

The principle of minimum potential energy requires that

oIl _
— = I = 1’2,3’4
dU;
the resulting algebraic equations are
oIl
6_111 — k1(U2 — Ul)(—l) —F, =k U —kU,—F, =0
oIl

YT ki(Uy — Uy) + 2k, (Us — Up)(=1) — F, = =k Uy + (ky+2k3)U, — 2k,Us — F, = 0
2



oIl

a_U3 — 2k2(U3 i Uz) + k3 (U4 - U3)(_1) - F3 — _2k2U2 + (2k2 + k3) U3 — k3U4 _ F3 = 0

oIl

which, when written in matrix form, are

k| —k, 0 0 71( U [ Fi
—ky ki + 2k —2k> 0 { U, — F>
0 —2k> 2kr + k3 —kj Us F;
0 0 —k3 kz | LU | Fy

and can be seen to be identical to the previous result.
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Formulation of Finite Element
Method using Principle of
Minimum Potential Energy



Principle of Minimum Potential Energy:

 The principle of minimum potential energy is stated as follows:

“ Of all displacement states of a body or structure, subjected to external
loading, that satisfy the geometric boundary conditions (imposed displacements),
the displacement state that also satisfies the equilibrium equations is such that the

total potential energy is a minimum for stable equilibrium.”

* In simple words, if a loaded elastic body is in equilibrium under given geometric
constraints or boundary conditions, the potential energy of the deformed body

assumes a stationary value.

* In the case of linear elastic bodies in equilibrium, the value is a minimum.



For methods in this category, the knowledge of governing differential equation of the
structure is not necessary. However, it is necessary to know the functional to be minimised.

For problems in structural engineering (in which displacements are primary unknowns), the
functional is the total potential energy of the structure.

The total potential energy of the structure n is expressed either in terms of unknown
mathematical constants or in terms of nodal displacements. The conditions of minimising &
with respect to constants or nodal displacements result in a set of simultaneous equations.
The solution of these equations decides the deformed state of the structure. Other dependant
quantities can then be found at various locations in the structure.
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1. Rayleigh Method:

In Rayleigh method, applied to beams and plates, the field variable (w) is assumed as
w = Ao
where, A is a mathematical constant and does not have any physical meaning, and ¢ is a

function (polynomial or trigonometric) which satisfies kinematic boundary conditions. The
total potential energy of the structure is minimised with respect to unknown constant A,

Example 1.9. A cantilever beam AB of span L, flexural rigidity EJ carries uniformly
distributed load g/unit length on entire span (Fig. 1.10). Use Rayleigh method to analyse and
comment on results,

q/unit

A A
: X
. \:
f L -]
Fig. 1.10. Cantilever beam.
Assume, wix) = Ax? ]
dw >A |
dx } (1.55)
d*w |
= 2A
dx )

Assumed function satisfies kinematic boundary conditions as
(i) 0 0 (ie) 'd—w 0 at 0
thw =0at x = i de = at x =
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Hence, assumed function is acceptable. The strain energy in the beam is

|

%
U = 2EIAL J
The potential of the distributed load is

_E L (dgw\2

E 2 =0 deg

_EI (L 5
dx—?Iﬂ (2A)?% dx

£ L
V=~-L:I qwdx=~qjﬂ szdxﬂ}
V=-qAL’/3 |

Total potential energy of the beam 1is
n=U+V=2EIA%? - gAL?3/3
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Applying minimum n theorem

B ARTEL. gk T8
dA
_ 9L
~ 12EI
2.2
Hence, w(x) = igyir ...(1.59)

The deflection at free end (x = L) using Eq. 1.59 is w(x = L) = qL*/(12EI) as against exact
value of gL%/(8EI).

In general, the results obtained by Rayleigh method are not satisfactory. We seek to
find that deflected shape of the structure which gives absolute minimum total potential energy.
For this, it is necessary to examine all possible kinematically admissible deflected shapes.
But, Rayleigh method examines only those deflected shapes which are generated by assumed
function by changing associated constant A. Obviously, the search is limited to the type of
shapes generated by assumed function and the one giving minimum n is treated as true solution.
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2. Rayleigh — Ritz Method

Example 1.10 In Rayleigh-Ritz method, the field variable is expressed as a linear
combination of more than one functions. Thus,

wx) =Y A ...(1.60)

Each function ¢, must satisfy kinematic boundary conditions of the problem. The
cantilever beam shown in Fig. 1.10 is analysed.

Assume
w(x) = Alxz < i A2x3 R A3x4
'(Cii_w - 2A1x o i 3A2x2 . i 4A3x3 L
=~ ..(1.61)
d w 2
y = 2A1 . 6A2x + 12A3x )
The assumed trial function satisfies boundary conditions as
At ¥ () w=0+0+0
At gty a0l
dx
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The strain energy in beam is

2
El dw
U= ul [dx ] dx——I (24; + 6A,x + 12A,x%) 2dx

4A7L +12A,A, 1% +16A,A;° + 12A2L1° + 36A,A;L* + ﬁA?, ﬂ

EI [
Potential of distributed load is
V=- J‘oL g(Ax* + Ayx® + Agx*)dx ]

v QAL ALY AL
3 4 5
n=U+V J

Applying minimum © theorem

darn _, dn _, dm
dA, ~ dA, = dA;
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Resulting equations in matrix form are
| 8L 128 16L° 1{ A [l

% 1217 241° 86L° |4A2:>=4qL4/4>

16L° 36L* 288L°/5||A4s) | qL’/5)

Solution gives

b =
R OO g
4FE1 6E] 24E1
Hence, the solution for deflection w(x) is

2.5 3 4
i 1 | gLl’x” qlx L i-]
4 6 24 |

This is the exact solution for beam in Fig. 1.10. This was possible because trial function
included all terms of the polynomial (e.g. x2, x3, x*) which are present in exact solution. Exact
solution will not be obtained if trial function is chosen as w(x) = A1x2 + A3,
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Potential Energy Approach to Derive Spring Element Equations:

 One of the alternative methods often used to derive the element equations and the stiffness matrix
for an element is based on the principle of minimum potential energy.

 This method has the advantage of being more general than the direct stiffness method.

 The principle of minimum potential energy is more adaptable to the determination of element
equations for complicated elements (those with large numbers of degrees of freedom) such as the
plane stress/strain element, the axisymmetric stress element, the plate bending element, and the
three-dimensional solid stress element.

 Again, we state that the principle of virtual work is applicable for any material behavior, whereas
the principle of minimum potential energy is applicable only for elastic materials.

« However, both principles yield the same element equations for linear-elastic materials.



« Moreover, the principle of minimum potential energy, being included in the
general category of variational methods (as is the principle of virtual work), leads
to other variational functions (or functionals) similar to potential energy that can

be formulated for other classes of problems, primarily of the nonstructural type.

» These other problems are generally classified as field problems and include,

among others, torsion of a bar, heat transfer, fluid flow, and electric potential.

« Still other classes of problems, for which a variational formulation is not clearly definable, can be
formulated by weighted residual methods. We will describe Galerkin’s method

* In the following the principle of minimum potential energy will be presented as used to derive the
spring element equations.

 This concept will be illustrated by applying it to the simplest of elements in hopes that the reader
will then be more comfortable when applying it to handle more complicated element types. in
subsequent chapters.



* The total potential energy m,, of a structure Is expressed in terms of
displacements.

* In the finite element formulation, these will generally be nodal
displacements such that

T[p — ﬂp (dll dz, d3, )

* When m,, Is minimized with respect to these displacements, equilibrium
equations result.

* For the spring element, we will show that the same nodal equilibrium
equ?]tigns [k]{d} ={f } result as previously derived in direct stiffness
method.

 The principle of minimum potential energy can be stated as follows:

“ Of all the geometrically possible shapes that a body can assume, the
true one, corresponding to the satisfaction of stable equnlbrlum of the body, IS
identified by a minimum value of the total potential energy.’



The concept of Potential Energy and stationary value of a function:

 Total potential energy Is defined as the sum of the internal strain energy U and
the potential energy of the external forces () ; that is,

m, =U+ Q (1)

» U Is the capacity of internal forces (or stresses) to do work through deformations
(strains) in the structure.

« Q) Is the capacity of forces such as body forces, surface traction forces, and
applied nodal forces to do work through deformation of the structure.

 To understand the concept of internal strain energy, we first describe the concept
of external work.

* In this section, we consider only the external work due to an applied nodal force.

 External work can also be due to body forces (typically self weight) and surface
tractions (distributed forces).



« External work Is done on a linear-elastic behaving member [here we consider an elastic
spring shown in figure below, by applying a gradually increasing magnitude force F to the
end of the spring up to some maximum value F_., less than that which would cause
permanent deformation in the spring.

FA
Foobmo

max

. k
2—/\/\/\/\ S F
X

(a) Spring subjected to gradually increasing force F |"|

(b) Force/deformation curve for linear spring

|
|
|
koo
|
|
|
|
|
|

Xinax
(a) (b)

The maximum deformation X, ., occurs when the maximum force occurs as shown in figure (b).

The external work is given by the area under the force-deformation curve.

The slope of the straight line is equal to the spring constant k.

The external work W, then given from basic mechanics principles as the integral of the dot product
of vector force F with the differential displacement dx,

Xmax X
u/:,, = '[F cdx = 0 Firax (_) dx = Fmaxxmax/z (2)

--rmax



* Where F Is given as
F - EHHX (-r/xmux) (3)
* In EqQ. (2), we note that F and dx are in the same direction when expressing the
second integral on the right side of Eqg. (2).

» By the conservation of mechanical energy principle, the external work due to the
applied force F is transformed into the internal strain energy U of the spring.

* This strain energy is then given by
‘/V(’ = U = Fma}(—’cmax/2 (4)

« Upon gradual reduction of the force to zero, the spring returns to its original
undeformed state.

* This returned energy that is stored in the deformed elastic spring is called internal
strain energy or just strain energy.

* A I S O F;IIEIX — k‘xlllﬂ){ ( 5)



By substituting Eqg. (5) into Eqg. (4), we can express the strain energy as
U= kfrrznax/z (6)

* The potential energy of the external force, being opposite in sign from the external
work expression because the potential energy of the external force is lost when the
work is done by the external force, is given by

Q= —F max- max (7)

 Therefore, substituting Egs. (6) and (7) into Eqg. (1), yields the total potential

energy as

1
Ty = Ekxﬁlax — FnaxXmax (8)

* In general for any deformation x of the spring corresponding to force F, we
replace x.., with x and F_, with F and express U and as

U(x) = kx2/2 (8-a)

Q(x) = —Fx (8 - b)



 Substituting Eqg. (8a) and (8b) into Eq. (1), the total potential energy will be
7T, (x) = %kﬂ — Fx (9)

* The concept of a stationary value of a function G (used in the definition of the
principle of minimum potential energy) is shown in figure. Here G Is expressed as
a function of the variable x. The stationary value can be a maximum, a minimum,
or a neutral point of G(x). GA

 To find a value of x yielding a stationary Maximum
value of G(x), we use differential
calculus to differentiate G with respect Neutral
to x and set the expression equal to zero,
as follows: Minimum

dx (10)



* An analogous process will subsequently be used to replace G with 7, and x with
discrete values (nodal displacements) d. .

« With an understanding of variational calculus we could use the first variation of
1, (denoted by &m,,) to minimize m,,.

« However, we will avoid the details of variational calculus and show that we can
really use the familiar differential calculus to perform the minimization of m,, .

* To apply the principle of minimum potential energy that is, to minimize m,, we
take the variation of 7, , which Is a function of nodal displacements di defmed In
general as:

o7, o7, o7,
5%, = —E5d) + BBy + = + —L5d, (11)
od, od» od,

* The principle states that equilibrium exists when the di define a structure state
such that 6, = 0 (change In potential energy = 0) for arbitrary admissible
variations in displacement &di from the equilibrium state.

 An admissible variation is one in which the displacement field still satisfies the
boundary conditions and interelement continuity.



* To satisfy 6m,=0, all coefficients associated with the &d; must be zero
Independently. Thus,

a]z'p . aﬂ/)
— =0 = L2 35 3 =0
dd; ¢ ) . d{d}

» where n equations must be solved for the n values of d; that define the static

equilibrium state of the structure.

Example: For the linear-elastic spring subjected to a force of 5000 N shown,
evaluate the potential energy for various displacement values and show that the

minimum potential energy also corresponds to the equilibrium position of the
spring.

(12)

F = 5000 N

4

k = 125 N/mm




Solution:
We evaluate the total potential energy as
T, =U+ Q

where U= %(kx)x and Q =—Fx

1
npz—kxz—Fx
)

=~ 125x% — 5000x

We now illustrate the minimization of 7, through standard mathematics. Taking the
variation of m,, with respect to x, or, equivalently, taking the derivative of m,, with
respect to x (as 7, Is a function of only one displacement x), we have

Tty

om, = X
dx

or, because &6x is arbitrary and might not be zero, o)

dx

=0




Tlp
= 125x — 5000

dx
Thus, 125x —5000=0
x =40 mm

This value for x Is then back-substituted into ,, to yield,

Ty

_% 125(4)%2—5000(4) = —100,000 N.mm
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Derivation of Spring element equations using Principle of minimum
potential energy:

We now derive the spring element equations and stiffness matrix using the principle of
minimum potential energy. Consider the linear spring subjected to nodal forces shown in
Figure 2-22. Using Eq. (2.6.9) reveals that the total potential energy is

1
R'p=5k(u2 — w)* — fixth — foxit (2.6.13)

where u, — u; is the deformation of the spring in Eq. (2.6.9). The first term on the right in Eq.
(2.6.13) is the strain energy in the spring. Simplifying Eq. (2.6.13), we obtain

T, = %k(u% — 2upuy + ui) — fiaity — forita (2.6.14)

'

f!,r L fo

M Figure 2-22 Linear spring subjected to nodal forces
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The minimization of 7, with respect to each nodal displacement requires taking partial deriv-
atives of 7, with respect to each nodal displacement such that

on
8—'” - %k(—Zuz + 2uy) — fix =0
a"“ 1 (2.6.15)
T2 = Zk(2 =
—= = —=kQQuy — 2uy) — o =0
EPR (2ur 1) =
Simplifying Egs. (2.6.15), we have
k(_u2 + ul) zflx (2 6 16)

k(ua — ) = fox

In matrix form, we express Eq. (2.6.16) as

ko—k|Ju| _ | /ix (2.6.17)
—k k 5] fgx
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« Example: Obtain the total potential energy of the spring assemblage shown and
find its minimum value. The procedure of assembling element equations can then
be seen to be obtained from the minimization of the total potential energy.

% k= 200 N/mm ky = 400 N/mm 2 k4 =600 N/mm
5

A - 7
@ @ Fyq.=25kN @ ///

s
1

w O

* Solution:
Using Eq. (2.6.8a), the strain energy stored in spring 1 is given by

UD = ki(uz — u)?/2 (2.6.19)

where the difference in nodal displacements u3 — u is the deformation x in spring 1.
Eq. (2.6.19) can be written in matrix form as

I ki —k I
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We observe from Eq. (2.6.20) that the strain energy U is a quadratic function of the nodal
displacements.

Similar strain energy expressions for springs 2 and 3 are given by
U = ky(us — uz)*/2 and U = k3(uy — us)*/2 (2.6.21)

with similar matrix expressions as given by Eq. (2.6.20) for spring 1.

Since the strain energy is a scalar quantity, we can add the energy in each spring to
obtain the total strain energy in the system as

3 e
v=y" ve (2.6.22)

The potential energy of the external nodal forces given in the order of the node numbering
for the spring assemblage is

Q= —(F,uy + Fu; + Fyuy + Frun) (2.6.23)

Equation (2.6.23) can be expressed in matrix form as

Q= —[u1 Ur Uz u4]< Cor (2624)
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The total potential of the assemblage is the sum of the strain energy and the potential energy
of the external forces given by adding Egs. (2.6.19), (2.6.21) and (2.6.23) together as

I, =U+Q = %kl(u3 —u)* + %kz(tm —u3)* + %k3(u2 — uy)*

— Fixuy — Faxup — F3xuz — Faxug (2.6.25)

Upon minimizing 7, with respect to each nodal displacement, we obtain

on

—L = —k1u3 + klul - Fi,r =0

c?ul

0

% = k3uy — ksuy — Fr, =0

3“2 (2.6.26)
T

uz

on

P — koug — kouz — kaur + kyugy — Fy = 0

c9u4
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In matrix form, Egs. (2.6.26) become

Substituting numerical values for &y, k>, and k3 into Eq. (2.6.27), we obtain

200
0

—200

0

0 —k
k3 0
0 Kk +k
—ky  —ks

0
600
0

—600

—200
0

6000

—400
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_k2

ky + ks ||

0
—600
—400

1000

Uj

Uz
%

7

u
Uy

us

Uy

(2.6.27)

(2.6.28)



Example: Repeat the solution of the previous example by using the principle of

minimum potential energy.

Ki =4 N/mm k,=6N/mm k;=3N/mm F,=-30N F;=0 F,=50N
k

,2 2
P— AN —91< F, |—WW—o0 > [,
40 « AV~ SO
@ k> ©)
Solution:
The total potential energy is given by the equation:

N=U,—W
The elastic strain energy is
1 1 1
Ue = Ekl(UZ — Up)*+2 [zkz(Us — Uz)zl + Eks(U4 — U3)?
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and the potential energy of applied forces is
Up = —W = —F,U, — F,U, — F;U; — F,U,
Hence, the total potential energy Is expressed as
Ve = 32Uy = U2 [3KaUs = 02| 4 3 ks(Us = Ul = Fyb = Fyls = Ry

The principle of minimum potential energy requires that

oIl _
— = I = 1’2,3’4
dU;
the resulting algebraic equations are
oIl
6_111 — k1(U2 — Ul)(—l) —F, =k U —kU,—F, =0
oIl

YT ki(Uy — Uy) + 2k, (Us — Up)(=1) — F, = =k Uy + (ky+2k3)U, — 2k,Us — F, = 0
2



:TZ = 2k, (Us — Uy) + kg (Uy — U3)(=1) — F3 = =2k, Uy + (2ky + k3) Us — kU, — F3 = 0

oIl

6_U4= k3(U4_U3)(_1)_F1=_k3U3+k3U4—F4=0

which, when written in matrix form, are

k| —k, 0 0 71( U [ Fi
—ky ki + 2k —2k> 0 { U, — F>
0 —2k> 2kr + k3 —kj Us F;
0 0 —k3 kz | LU Fy

U,=25.83 mm, U;=8.17 mm, U,= 5.0 mm
F,=—-4U,=-4(5.0)=—20N
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Potential Energy Approach to Derive Bar Element Equations:

We now present the principle of minimum potential energy to derive the bar element equations.
Recall from Section 2.6 that the total potential energy 1, was defined as the sum of the internal
strain energy U and the potential energy of the external forces €:

T, =U +Q (3.10.1)

To evaluate the strain energy for a bar,we consider only the work done by the internal
forces during deformation. Because we are dealing with a one-dimensional bar, the internal
force doing work on a differential element of sides Ax, Ay, Az, is given in Figure 3-24 as
o, (Ay)(Az), due only to normal stress o,. The displacement of the x face of the element is
Ax(&, ); the displacement of the x + Ax face is Ax(&, + de&, ). The change in displacement
is then Ax de,, where deg, is the differential change in strain occurring over length Ax. The
differential internal work (or strain energy) dU is the internal force multiplied by the displace-
ment through which the force moves, given by

dU = o, (Ay)(Az)(Ax)de, (3.10.2)

'
i Ay
A - =1 = o, (Ay)(Az)

/ ’, Az
2 Z
(O—-r s
Ax
L L
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Rearranging and letting the volume of the element approach zero, we obtain, from Eq. (3.10.2),

dU = o,de, dV (3.10.3)

For the whole bar, we then have
U = J’ j j { jﬂ o-_,dax} dv (3.10.4)

Now, for a linear-elastic (Hooke’s law) material as shown in Figure 3-25, we see thato, = Eg,.
Hence substituting this relationship into Eq. (3.10.4), integrating with respect to &,, and then
resubstituting o, for Ee,, we have

U= %J’Ijaxsxdv (3.10.5a)

as the expression for the strain energy for one-dimensional stress.
For a uniform cross-sectional area A of a bar with stress and strain dependent only on the
x coordinate, Eq. (3.10.5a) can be simplified to

= %jaxs_,,.dx (3.10.5b)
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We observe from the integral in Eq. (3.10.5b) that the strain energy is described as the area
under the stress/strain curve.

The potential energy of the external forces, being opposite in sign from the external work
expression because the potential energy of external forces is lost when the work is done by the
external forces, is given by

Q =~ [[[XyudV — [[Tu,dS - iﬁxui (3.10.6)
v S '

i =1

where the first, second, and third terms on the right side of Eq. (3.10.6) represent the poten-
tial energy of (1) body forces X,, typically from the self-weight of the bar (in units of force
per unit volume) moving through displacement function u, (2) surface loading or traction 7},
typically from distributed loading acting along the surface of the element (in units of force per
unit surface area) moving through displacements u;, where u, are the displacements occurring
over surface Sy, and (3) nodal concentrated forces f,, moving through nodal displacements u;.
The forces X, T, and f;, are considered to act in the local x direction of the bar as shown in
Figure 3-26. In Egs. (3.10.5) and (3.10.6), V' is the volume of the body and Sj is the part of the
surface S on which surface loading acts. For a bar element with two nodes and one degree of
freedom per node, M = 2.
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Consider the bar element of length L, with constant cross-sectional area A, shown in
Figure 3-26. Using Egs. (3.10.5) and (3.10.6), we find that the total potential energy,
Eq. (3.10.1), becomes

™, = % JOLa,rsxdx ~ fiatty = faxity = g u,T, dS — ” [ux,av  (3.107)

because A is a constant and variables o, and &, at most vary with x.
From Eqgs. (3.2.8) and (3.2.9), we have the axial displacement function expressed in terms
of the shape functions and nodal displacements by

u=[N|{d} u, =[N;|{d} (3.10.8)

where

IN] = [1 —% ﬂ (3.10.9)

[ N, ]is the shape function matrix evaluated over the surface that the distributed surface traction
acts and

[d} = { “ } (3.10.10)

U
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Then, using the strain/displacement relationship &, = du/dx, we can write the axial strain in

matrix form as

(e} = |~ |t@)

{e.} = [B1{d}

where we define [B] as the gradient matrix

The axial stress/strain relationship in matrix form is given by

{O'x} = [D]{Sx}

where

(D] = [E]

(3.10.11)

(3.10.12)

(3.10.13)

(3.10.14)

(3.10.15)

for the one-dimensional stress/strain relationship matrix and E is the modulus of elasticity.

Now, by Eq. (3.10.12), we can express Eq. (3.10.14) as

{ow 1 = [D][B{d}

(3.10.16)
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Using Eq. (3.10.7) expressed in matrix notation form, we have the total potential energy
given by

mp = S o {oddx - {aY P} - ISJ {u )" {T:}as - | {j{u}’{xb}dv 1001

where { P} now represents the concentrated nodal loads and where in general both {o, } and
{&.} are column matrices. For proper matrix multiplication, we must place the transpose on
{o.}. Similarly, {u} and {7\ } in general are column matrices, so for proper matrix multiplica-
tion, {u} is transposed in Eq. (3.10.17).

Using Eqgs. (3.10.8), (3.10.12), and (3.10.16) in Eq. 3.10.17, we obtain

7y = 2 [ 4y (BT (DY [B{d}ds - {a} {P)

~[[{aY [N, T {7 }ds — [[[{a} INT {X,}av (3.10.18)

In Eq. (3.10.18), 7, is seen to be a function of {d}; thatis, &, = 7, (u;, u2). However, [B] and
[D], Egs. (3.10.13) and (3.10.15), and the nodal degrees of freedom u; and u, are not functions
of x. Therefore, integrating the first integral in Eq. (3.10.18) with respect to x yields

®p = %{d}T[B]T[D]T[B]{d} - {d} {s} (3.10.19)
where
{r} = (P} + [[IN {T:}as + [[[INT {X,}av (3.10.20)
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From Eq. (3.10.20), we observe three separate types of load contributions from concen-
trated nodal forces, surface tractions, and body forces, respectively. We define these surface
tractions and body-force matrices as

{£.} = [[IN {T: }as (3.10.20a)
{f} = [[[INT {X,}dv (3.10.20b)

The expression for [f] given by Eq. (3.10.20) then describes how certain loads can be
considered to best advantage.

Loads calculated by Egs. (3.10.20a) and (3.10.20b) are called consistent because they
are based on the same shape functions [N] used to calculate the element stiffness matrix.
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The loads calculated by Eq. (3.10.20a) and (3.10.20b) are also statically equivalent to the

original loading; that is, both { f; } and {f; } and the original loads yield the same resultant
force and same moment about an arbitrarily chosen point.

The minimization of 77, with respect to each nodal displacement requires that

Sem— — and — =0
> = (3.10.21)

Now we explicitly evaluate 7, given by Eq. (3.10.19) to apply Eq. (3.10.21). We define the
following for convenience:

{U*} = {a}" [BY [D] [B]{d} (3.10.22)

Using Egs. (3.10.10), (3.10.13), and (3.10.15) in Eq. (3.10.22) yields

|
L [ 1
{U*} =[u; up]5 f >[E][—z ZH Z; } (3.10.23)
L
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Simplifying Eq. (3.10.23), we obtain

E
U* = F(uf- - 2uyuy + u3) (3.10.24)

Also, the explicit expression for {d}" {f} is

{[dY {f} = whe + wafo (3.10.25)

Therefore, using Egs. (3.10.24) and (3.10.25) in Eq. (3.10.19) and then applying Eqgs. (3.10.21),
we obtain

an AL| E
2 [f}(z"' B 2"’)] =0
and (3.10.26)
an AL| E
2 [B(_z"' N 2“1)] ~fx =0

In matrix form, we express Egs. (3.10.26) as

j;ﬁ N '15[—: _11“:;} - {?} = {g} (3.10.27)
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or, because {f} = [k]{d}, we have the stiffness matrix for the bar element obtained from
Eq.(3.10.27)4as

[k]zA_E[ 1 _1] (3.10.28a)
L|-1 1

As expected, Eq. (3.10.28a) is identical to the stiffness matrix Eq. (3.1.14) obtained in
Section 3.1.

Now that we have derived the bar stiffness matrix by using the theorem of minimum
potential energy, we can observe that the strain energy U [the first term on the right side of

Eq. (3.10.18)] can also be expressed in the quadratic form U = 1/2{d}" [k]{d} as follows:

1 =]
o= 4B - 3| ) flof - 20 2w st 202
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Finally, instead of the cumbersome process of explicitly evaluating 7,, we can use the
matrix differentiation as given by Eq. (2.6.12) and apply it directly to Eq. (3.10.19) to obtain

orm,

A d? = AL[B]'[D][B{d} - {f} =0 (3.10.29)

where [D]" =[D] has been used in writing Eq. (3.10.29). The result of the evaluation of
AL[B]" [D][B] is then equal to [k] given by Eq. (3.10.28a). Throughout this text, we will use
this matrix differentiation concept (also see Appendix A), which greatly simplifies the task of

evaluating [k].
To illustrate the use of Eq. (3.10.20a) to evaluate the equivalent nodal loads for a bar
subjected to axial loading traction 7, we now solve Example 3.12.
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Example:

A bar of length L is subjected to a linearly distributed axial line loading that varies from zero
at node | to a maximum of CL at node 2 (Figure 3-27). Determine the energy equivalent

nodal loads.

T. = Cx (force/length)

1

W Figure 3-27 Element subjected to linearly varying axial line load

SOLUTION:

Using Eq. (3.10.20a) and shape functions from Eq. (3.10.9), we solve for the energy equiv-
alent nodal forces of the distributed loading as follows:

_ ) i
ol = { o

}:

J

S

[N {T, Yds = j:< L lrexya (3.10.30)
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Cx? Cx*

2 3L |
Cx?

3L

10 (3.10.31)

o
L

oz
6

cz
3

where the integration was carried out over the length of the bar, because T, is in units of

force/length.
Note that the total load is the area under the load distribution given by

cL?
2

F= %{LJ{CL} - (3.10.32)

Therefore, comparing Eq. (3.10.31) with (3.10.32), we find that the equivalent nodal loads
for a linearly varying load are

Six = lF = one-third of the total load
: (3.10.33)

fox = %F = (wo-thirds of the total load
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Note:
For the simple two-noded bar element subjected to a linearly varying load

(triangular loading), place one-third of the total load at the node where the
distributed loading begins (zero end of the load) and two-thirds of the total load at
the node where the peak value of the distributed load ends.




Example:

For the rod loaded axially as shown in Figure 3-28, determine the axial displacement and
axial stress. Let E = 2 X 10" N/m2, A = 12.5 X 10* m?2, and L = 1.5 m Use (a) one and
(b) two elements in the finite element solutions. In Section 3.11, one-, two-, four-, and eight-
element solutions will be presented from the computer program Autodesk [9].

T, =-80,000 N/m

- 1.5m -

Vi

1
m Figure 3-28 Rod subjected to triangular load distribution

(a) One-element solution (Figure 3-31).

-120,000

T, = -80.000x

YI//77777077777777.

W Figure 3-29 One-element model
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SOLUTION:
From Eq. (3.10.20a), the distributed load matrix is evaluated as follows:

{Fo} = [ INT {T; }dx (3.10.34)

where 7 is a line load in units of newtons per meter and { fo } = {Fy }. Therefore, using
Eq. (3.2.9) for [N] in Eq. (3.10.34), we obtain

X
l —_—
L
wr=J1 . L 1r_80,000x} dx (3.10.35)
L
or . ) . - 2
o) ) o) 2
—80,000/~ i« 80,000/~ —80,000/~ —80,000(1.5)
F‘I.\’ = 4 2 3 | = 6 , = 4 6 {
F>, —80,000172 —80,000172 —80,000(1.5)*
3 ] 3 3
or Fix = —30,000 N F>y = —60,000 N (3.10.36)

Using Eq. (3.10.33), we could have determined the same forces at nodes 1 and 2—that is,
one-third of the total load is at node 1 and two-thirds of the total load is at node 2.
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Using Eq. (3.10.28), we find that the stiffness matrix is given by

(kD] = 16.67 X 107 [_i _i]

The element equations are then

1667 x107| 1 ~t{Jal o] —30.00 (3.10.37)
—1 110 Ry — 60,000

Solving Eq. 1 of Eq. (3.10.37), we obtain

uy = —0.18 mm (3.10.38)

The stress is obtained from Eq. (3.10.14) as

{O'.r} = [D]{g.r}
= E[Bl{d}

111
o _]< “
| L L u;
(uy — uy)
.\ L )
0+0.00018)

1.5

= 24 Mpa (T) (3.10.39)
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(b) Two-element solution (Figure 3-30).

—120,000

ANttt

W Figure 3-30 Two-element model

We first obtain the element forces. For element 2, we divide the load into a uniform part
and a triangular part as shown in Figure 3—-30. For the uniform part, half the total uniform
load is placed at each node associated with the element. Therefore, the total uniform part is

(0.75 m)(—60,000 N/m) = —45,000 N
and using Eq. (3.10.33) for the triangular part of the load, we have, for element 2,

3.10.40
i —[4(45,000) + 2(22,500)] ( )

30| |7(45,000) + 3(22,500)] | [-30,000 N
—37,500 N

For element 1, the total force is from the triangle-shaped distributed load only and is given by

|
5(0.75 m)(—60,000 N/m) = —22,500 N
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On the basis of Eq. (3.10.33), this load is separated into nodal forces as shown:

(1) &8
w | _ [3(722500( _ | -7500N (3.10.41)
2(1) %(-22,500) —15,000 N
The final nodal force matrix is then
Fix -7500
F ¢y = <—30,000 — 15,000 (3.10.42)
F3.r R3.r - 31,500
The element stiffness matrices are now
|
2 3 2 3 (3.10.43)
AE - -
(k0= === DTN =@saxaony | DT
L/2] -1 1 -1 |
The assembled global stiffness matrix is
1 =1 0 N
[K] =(33.34 X 107)| -1 2 -1 |— (3.10.44)
0o -1 1 |™
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The assembled global equations are then

1 —1 0f|m —7500
(33.34 X 107)| -1 2 —1{{u = —45,000 (3.10.45)
0 =1 1f|luz=0 Rz, — 37,500

where the boundary condition #3 = 0 has been substituted into Eq. (3.10.45). Now, solving
equations | and 2 of Eq. (3.10.45), we obtain

uy = —0.18 mm
u, = —0.1575 mm (3.10.46)
The element stresses are as follows:
Element 1
E[ | 1 ] uy = —0.00018
Ur — — e e
' 0.75 0.75 u, = —0.0001575 (3.10.47)
= 6 Mpa (T)
Element 2
[ 1 | ] u, = —0.0001575
o, = EFl|l — ——
075 Q.75 uz =0 (3.10.48)
= 42 Mpa (T)
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Comparison of Finite Element Solution to Exact Solution for Bar:

« We will now compare the finite element solutions for Example 3.13 using one,
two, four, and eight elements to model the bar element and the exact solution.

 The exact solution for displacement is obtained by solving the equation

1 px =
u = EJ.O P(x)dx (3.11.1)

where, using the following free-body diagram,

-——R0,000x N/m
4‘

| > P(x)

X

we have P(x) = %x(S0,000x) = 40,000x2 N (3.11.2)

Therefore, substituting Eq. (3.11.2) into Eq. (3.11.1), we have

1 ¢x
u=——|_ 40,000x2 dx

AE -0 z (3.11.3)
40,000.x°
- )

3AE




or

~40,00073
3AE

C, = (3.11.4)

Substituting Eq. (3.11.4) into Eq. (3.11.3) makes the final expression for displacement

U = 40,000 (.1.’3 — LB) (3115)
3AE

Substituting A = 12.5 X 107*m?, E =2 X 10" N/m?2, and L = 1.5 m into Eq. (3.11.5), we
obtain

u = 15333 X107 x> —0.00018 (3.11.6)
The exact solution for axial stress is obtained by solving the equation

P(x)  40,000x>

= 32 2P (3.11.7)
A 125 %10% m2 o

o(x) =
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0 72
0 One element Y
60 - o Two elements )
4 Four elements A—h —a—4
=z 0.00005 » Eight elements i
g [
?3) | & One element £ _ 3
£ | © Two elements = 40[— o8 8= i d
E * Four elements g [
E  0.0001 - a Eight elements %
g : A A A A
§. n A A ye
A - ’
20— /
Exact solution
0.0015 |- ™\ Exact solution Koo % = o(x) = 3242
u=5.333(107)x° - 0.00018 = il
-0.00018 L L 1 — 0 L L : L
0 0.5 L0 1.5 0 0.5 1.0 1.5
Axial coordinate in meters Axial coordinate in meters
m Figure 3-31 Comparison of exact and finite element solutions for axial displacement : . .. . .
g P P W Figure 3-32 Comparison of exact and finite element solutions for axial stress (along length
(along length of bar)
of bar)
|
1 Exact solution: ¢ = 72 MPa
01 /
= o
s 60
=
S’
40
20
1 i 1 1 1 -
| 2 4 6 8

Number of elements

W Figure 3-34 Axial stress at fixed end as nL%mb r of eméar]ts Increases
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Some conclusions from these comparison of results:
1) The finite element solutions match the exact solution at the node points.

2) Although the node values for displacement match the exact solution, the values
at locations between the nodes are poor because we used a linear displacement
function within each element, whereas the exact solution is a cubic function.

3) The stress Is derived from the slope of the displacement curve as o =Ee=E(du
dx). Therefore, by the finite element solution, because u Is a linear function in
each element, axial stress Is constant in each element.

4) The best approximation of the stress occurs at the midpoint of the element, not
at the nodes. This is because the derivative of displacement is better predicted
between the nodes than at the nodes.

5) The stress Is not continuous across element boundaries. Therefore, equilibrium
Is not satisfied across element boundaries. Also, equilibrium within each
element is, in general, not satisfied.

6) The axial stress at the fixed end (x=L) converges as the number of elements
Increases.




Example: The properties of elements of the bar shown below are as indicated in the
figure. Each element iIs subjected to a traction force T, per unit length and a body
force f per unit volume. The units of T, , f, A, , and so on are assumed to be
consistent. The Young’s modulus of the material is E. A concentrated load P, Is
applied at node 2. Determine the structural stiffness matrix and the nodal load

vector.

VI SIS LSS S SIS S S S SIS S LSS
\ 1
{ .
Tl‘l AL,
{ 2
.
T: 4 Y f,l A,. L
y J_;
T
| As L

/14L4

5
J[ E, f = constant
X




* The element stiffness matrix for each element i is obtained from Eq. (23) as:

- EA;l 1 —1
kD] =
[ ] (;' !_l l}

The element connectivity table is given below:

Element l 2
1 1 2
2 2 3
3 3 4
4 4 5

The element stiffness matrices can be “expanded” using the connectivity table and
then summed (or assembled) to obtain the structural stiffness matrix as follows:

— — — — e - ™ -

1 =1 0 0 0 0O 0 0 0 0 00 0 0 0 000 0 0
‘ — 0 0 0 1o 4 & 10 g B 8 06 000 0 0
A > FEHOY gt 2 L WK EA, EA,
K = : 0O 0 0 0 0]+ ( 0 —1 1 0 0 +(,— 8 6 1 —1 9|+ ; 000 0 0
' 0O 0 0 0 0 210 0 0 0 0 NE 0 = 1 0 15 e D T
0 0 0 0 0] (0 0 0 0 0] 00 0 0 0] (0 0 0 —1 l |
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which gives

A, Ay
—= _— 0 0 0
€ £
A, A A A, . T
6 \6 ¢ > ¢, ° 2 o} = jﬂ[N] {Xp }dV
K=E| 0 < P A3 0 v
N t, t, {5 {5
A, Aj A A
" " A A A A
(‘; (3 (4 (4
A, A,
0 0 0 —— =

The load vector for each element is determined from Eg. (20) as

{f} = {P} + [[[N,J {T: }dS + [[[INT {Xp}dV
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1. Traction:  {£} = [[[N.J {7 }ds

_1 - E- -Ll -_ _- _
L _ 2 |_T1il4
(Tl)dx = T1 L, — >

3 =

X
L

(1@ =21, (£ =

T3L3
2 2

2

I
_ = e

[}]; () = Tl

b} = T {Xp}a

2. Body forces: Lo I‘H[M Xo iV
L A

L 1 AL f 1

{3 = fol “l(HAdx = Ayf L, e 121f [1]

X
L

{fb}(Z) _ Azng_[ﬂ , {-fb}(g) — A3;‘3f H]’ %fb}@) ;A‘inf [ﬂ



Assembling the traction and body forces matrices with the external load vector

( Alglf n T12L1 )
AL f n TyL4 n AxLy f + Tl (0
2 2 2 2 P,

ALy f | ToLp | Aszlsf | TsL3

(F) =} + (o} + (Py = {222L Tl g Aalof  Toba by 8

_|_

Aslsf | Tily | Aslsf | Tils 0
2 2 2 2 .0 J
ApLyf n TyLy

\ 2 2 J



System Assembly in Global Coordinates:

Notes on element loads at node between
two element: 1

Consider the system which has three F,
nodes and two elements.

The two elements are subjected A A
to three point loads. |_> '

Force F,at node 2 Is common £
for the two elements. @

The free body diagram for the

)
i

two elements shows that the ~o-
force at node 2 is divided by the
two elements.
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u'y = U,

* Element matrices are:

(1
U ))—U7
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ki —k

—K; Ky
Cky —kyT
| —k2 k2 |

—k
ki

—~k
k>

Il()ZU;

{42}

|
|

iy

|

(2)
i

Substitute the global DOF iIn element matrices.

LA

(1)

/i

£y

Fad
f(l)
o
Fid
Express the element DOF in terms of the global system DOF.

|




Assembling element matrices to construct the global system matrices.

) (1)

/\'| —/\'] 0 U| .fl
|:—/\'] /\'| +/\3 —/\3:| UZ = f‘g) + f(g’ >

0 —k» k> Uj f-(_’»

From the free body diagram it can be found that

(R )

) F f(j) . Fw
- 7 J 3 = 3

f=Fh Y+
The global matrices will be

/\'] —/\'1 0 U] F|
0 —/\'3 /\'3 U; F},
Where the global stiffness matrix is usually written in upper case K as

/\'| —/\'1 0
K] = [—k] ki + ko —k:}

0 —/\'1 /\'w
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Q1: Use FEM to determine the reactions at the
supports. E= 100 GPa, A(AB)=0.0001m?,
A(BC)=0.0002m?, and F= 10 kN.

Ans. R, = -4.444 kN, R= 5.556 kN

Q2: Determine the displacement of rigid

member, element forces an reactions at wall. K@

k= 50N/cm, k(Y= 30N/cm, k)= 70N/cm, and F ¢ Y Element2y

F,=40 N. @ p—" 7 Element 1 § k3 /

Ans. F=aN_ K| 0.40:( }_) .‘ Element 3 7
T "0 _
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Derivation of Finite Element
Equations for Two Dimensional
Elements

Plane Stress and Plane Strain Stiffness Equations



« Two-dimensional (planar) elements are defined by three or more nodes in a two-
dimensional plane (that is, X — ).

* The elements are connected at common nodes and/or along common edges to
form continuous structures. | T

3>

(b)
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* Nodal displacement compatibility is then enforced during the formulation of the
nodal equilibrium equations for two-dimensional elements.

« If proper displacement functions are chosen, compatibility along common edges is
also obtained.

* The two-dimensional element is extremely important for:

(1) plane stress analysis, which includes problems such as plates with holes, fillets,
or other changes in geometry that are loaded in their plane resulting in local
stress concentrations, and

(2) plane strain analysis, which includes problems such as a long underground box
culvert subjected to a uniform load acting constantly over its length, a long,
cylindrical control rod subjected to a load that remains constant over the rod
length (or depth), and dams and pipes subjected to loads that remain constant
over their lengths.



We begin with the development of the stiffness matrix for a basic two-dimensional or
plane finite element, called the constant-strain triangular element.

The constant-strain triangle (CST) stiffness matrix is considered first because its
derivation is the simplest among the available two-dimensional elements.

The element is called a CST because it has a constant strain throughout it.

We will derive the CST stiffness matrix by using the principle of minimum potential
energy because the energy formulation is the most feasible for the development of the
equations for both two- and three-dimensional finite elements.

Finally, the development of the stiffness matrix for the simple four-noded rectangular
(Q4) element will be considered and compared with the finite element solution to a beam
bending problem modeled using the CST and Q4 elements.



Basic Concepts of Plane Stress and Plane Strain:

* These concepts are important because the developments in this chapter are directly
applicable only to systems assumed to behave in a plane stress or plane strain manner.

I- Plane Stress:

* Plane stress is defined to be a state of stress in which the normal stress and the shear
stresses directed perpendicular to the plane are assumed to be zero.

 For instance the plates in the x — y plane shown subjected to surface tractions T (pressure
acting on the surface edge or face of a member in units of force/area) in the plane are under
a state of plane stress; that is, the normal stress o, and the shear stresses t,., and z,,, are

assumed to be zero.

Ay Ay
 Generally, members that are thin (those witha  /# T r & A
g : : 7 | 1§ = T
small z dimension compared to the in-plane x RPN > i
and y dimensions) and whose loads act only in g | @ e -
the x —y plane can be considered to be under ~ 4-————— '~ Dl Velttatininte 4

plane stress. (a) (b)



II- Plane Strain:

Plane strain is defined to be a state of strain in which the strain normal to the x —y plane &, and
the shear strains y,, and y,,, are assumed to be zero.

The assumptions of plane strain are realistic for long bodies (say, in the z direction) with constant
cross-sectional area subjected to loads that act only in the x and/or y directions and do not vary in
the z direction.

Some plane strain examples are shown in figure.

In these examples, only a unit thickness (1 mm or 1 m) of the structure is considered because each
unit thickness behaves identically (except near the ends).

The finite element models of the structures in figure consist of appropriately discretized cross
sections in the x — y plane with the loads acting over unit thicknesses in the x and/or y directions

only.
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Two-Dimensional State of Stress and Strain:

* The infinitesimal element with sides d,. and d,, has normal stresses g, and

gy acting in the x and y directions (here on the vertical and horizontal faces),
respectively.

* The shear stress 7, acts on the x edge (vertical face) in the y direction.
* The shear stress 7,,, acts on the y edge (horizontal face) in the x direction.

* Moment equilibrium of the element results in 7,,, being equal in magnitude to ,,.
A O,

S ——

I y

ijr.

Ox ‘—% dy Oy X
Ty

dx

¥

—-
Tyx

Vo,



« Hence, three independent stresses exist and are represented by the vector column

matrix

o} =0y} (6.1.1)

The stresses given by Eq. (6.1.1) will be expressed in terms of the nodal displacement
degrees of freedom. Hence, once the nodal displacements are determined, these stresses can
be evaluated directly.

Recall from strength of materials [2] that the principal stresses, which are the maximum
and minimum normal stresses in the two-dimensional plane, can be obtained from the follow-
ing expressions:

Ox T Oy Oz — Ty 2 5
g1 = T + T T Txy = Omax

Oy + Ty Oy — Oy - 5
az_T— T + Txy = Omin

Also, the principal angle 6,,, which defines the normal whose direction is perpendicular to the
plane on which the maximum or minimum principal stress acts, is defined by

(6.1.2)

27,
tan20, = —— (6.1.3)

O = Oy
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* From the general definitions of normal and shear strains, we obtain

aL‘
B adx
‘_ﬁ‘i_g““u <+ %dx
u av ou av
e, = — e, = — , = — + — 6.1.4
X Ix ) Jy Yxy Jy Ix ( )

The strains are generally represented by the vector column matrix
Ey

e} =28} (6.1.5)
Yxy
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For plane stress

O, =Tx; = Ty = 0 (6.1.6)
Yxz = Vyz = 0, but g, # 0.
to} = [D){e} (6.1.7)
1 v 0 |
p1=—— "' 0 (6.1
“10 o .

[D] is called the stress/strain matrix (or constitutive matrix)

 For plane strain, we assume the following strains to be zero:
€ =Yz =Yy =0 (6.1.9)
Ty, = Ty, = 0, buto, # 0.

0
E 1% | —v 0

Dl =
10} 1+ v)1-—2v) 1 —2v

(6.1.10)

The {0} and {&} matrices remain the same as for the plane stress case.
U of Bsarah - D of Civil Eng Dr Abdulamir Atalla 2022



Derivation of the Constant-Strain Triangular Element Stiffness
Matrix and Equations:

« Consider the thin plate subjected to tensile surface traction loads T in the figure.

y, U A

Step 1: Select Element Type

I &
* The basic element is the linear displacement . "
triangular (LDT) element. - ]
 The discretized plate will be as shown. - -
y A
Ay u m

J(x5 ¥5)
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The triangular elements is used because boundaries of irregularly shaped bodies can be
closely approximated, and because the expressions related to the triangular element are

comparatively simple.
This discretization is called a coarse-mesh generation if a few large elements are used.
Each node has two degrees of freedom; an x and a y displacement.

Let u; and v; represent the node i displacement components in the x and y directions,

respectively.

Here all formulations are based on this counterclockwise system of labeling of nodes,

although a formulation based on a clockwise system of labeling could be used.



 Remember that a consistent labeling procedure for the whole body iIs necessary to

avoid problems in the calculations such as negative element areas.

* Here (X;, ¥i), (X, Y;), and (xy, ) are the known nodal coordinates of nodes i, J,

and m, respectively.

* The nodal displacement matrix is given by

U;

i v,

{d;} "
{d}:<{dj}>-:<vj > (1)

dn}] |,

Vi
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« Step 2: Select Displacement Functions

* We select a linear displacement function for each element as: J

u(x,y)=a;+ a,x+azy

(2)

v(ix,y) = a,+ asx+agy
where u(x,y) and v(x,y) describe displacements at any interior point (X, y ) of the element.

 The linear function ensures that compatibility will be satisfied.

« A linear function with specified endpoints has only one path through which to pass—that

IS, through the two points.

* Hence, the linear function ensures that the displacements along the edge and at the nodes

shared by adjacent elements, such as edge i-j of the two elements are equal.



 Using Eqs. (2), the general displacement function {y}, which includes the
functions u and v, can be expressed as

a

a»

ay + ax + azy Il x vy 0 0 Of|a3
W) = = N 3
as + asx + agy 0 0 0 1 x y|l|as ( )

ds

deg
« To obtain the a s in Eqgs. (2), we begin by substituting the coordinates of the nodal
points into Egs. (2) to yield

up = u(x;,yi) = a + axx; + azy;

uj = u(xj,yj) =a +axx; + azy;

Uy = U( Xy, Ym) = a1 T+ ayx,, + a3y,

Vi =v(X;,yi) = as + asx; + agy; (4)

Vi =v(X;,yj) = a4 +asx; + agy;

Vim = V(Xm,Vm) = Q4 + A5Xpy + QY
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* We can solve for the a’s beginning with the first three of EQs. (4) expressed in
matrix form as:

u; Il xi vi|lg
VUj ¢ = I Xj Vi [ya2 (5)
Um L' X Ym | |93

And solving for {a} to have
la} = [.\':_l {u} (6)
where [X] Is the 3x 3 matrix on the right side of Eq. (5).
The method of cofactors is one possible method for finding the inverse of [X].
Thus,

a; a; Qapy
3 |
[-\‘] L = ﬂ Bi Bj Bm (7)
Yi Vi Ym
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where I x v
I .

A= x (8)
1 Xm _\'!m

IS the determinant of [x], which equals
2A = x;(y i " Ym) T XV — Vi) T X (Yi —Yj)

(9)

Here A is the area of the triangular element.
& =XjVm — VjXm & =ViXm — Xi¥m Qm = XiyV; — ViXj
,Bi A Bj =y — M ,Bm ot (10)

Yi = Xm — Xj Yi =Xi — Xm Ym = Xj — Xj

Thus, eq. (6) will be . - L

a _1 a; aj Oy | |uU;

lot=Llg 4 J,. | (11)
2 2 A B: Bj Bm ]

143 | Yi Vi Ym ||Um|
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 Similarly, using the last three of egs (4) to obtain

(4

3 ds

..

(g

]

2A

—

;
Bi
Yi

&;

Bj

YJ

a.fﬂ

Bm
Ym

-

V;
1% j

?
1’m

(12)

 The general x displacement function u(x, y) of {w} will be in terms of the

coordinate variables x and y, known coordinate variables a;, ; , o, f; ..
unknown nodal displacements u; , u;, and u,.

 Beginning with egs. (2) expressed in matrix form, we have
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q

5]

a3

(13)

©> Vm

and



 Substituting Eqg. (11) into Eqg. (13), we obtain

| a; «a; Qn ||u;
(up=—I[1 x YI{B Bi Bm|\4j (14)
Yi Vi Tm L“m |

- -

« Expanding eq. (14) gives:

aiu; + ajuj + apiy

1
{ll} — a[l X \] \ ,B,'ll,' = 3 lelj : 2 B,,,le > (15)
Yil; + YU it YmUm
« Multiplying the two matrices in Eg. (15) and rearranging, we obtain
l | ,
u(xy) = —{(@ + B + v + (@ + Bix + Y0 + (@ + Bk + i) 16)

2A
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* They displacement function v(x,y), can be obtained by replacing u;, u;, and uy, In

equation (6) by v;, v;, and v,,, respectively
I

vx,y) = a{(a: T Bix +Y:iy)V; + + ﬁj\ ¥ ')’j + (o + Bm\ t YmY)

Define the shape functions as:
N; = ﬁ(ﬁfa + Bix + viy)

1
N; = ﬂ(ﬂu‘ + Bjx + v;y)

1
24
Which reduces egs.(16) and (17) to

WX, Y) = Niu; + Nj”j + Nyl

N, = (o + Bm-x + Tm}")
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(17)

(18)

(19)



In matrix form | | |

u(x,y) Niu; + Nju; + N,y
¥} = =9 i

v(x,y) Nivi + Njvj + Nyom

4 )

U

Ui (20)

N, 0 NN 0 N, O : uj

O N, 0O N; 0 N, vj

Um

U
\ m )

Finally, expressing Eg. (20) in abbreviated matrix form, yields
W} = [N|{d} (21)
where [N] Is given by

Ny 0 Nj 0 N, 0
IN] =

0O N, 0 Nj 0 N, (22)
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* Now the general displacements have expressed as functions of {d}, in terms of the
shape functions N; , N;, and N,..

 The shape functions represent the shape of {1y} when plotted over the surface of a
typical element.

* For instance, N, represents the shape of the variable u when plotted over the
surface of the element for u; =1 and all other degrees of freedom equal to zero, that
IS, U; = Uy, = V; = V3=V, = 0.

N; A

 The variation of N; plotted over the surface of a
typical element is shown in figure.

* Note that N; does not equal zero except along a
line connecting and including nodes j and m.

* Finally, N; +N; +N, = 1 for all x and y locations
on the surface of the element.

m




EXAMPLE 3.4

The temperatures at the nodes of a triangular element are given by T; =210 °F, T;=270 °F, and Ty = 250 °F. If the nodal co
ordinates are (x; yj) = (50, 30)in, (x, yj)) = (70, 50) in, and (xk, yx) = (55, 60) in, determine (a) the shape functions of the elemen
and (b) temperature at the point (x, y) = (60, 40) in the element.

Notes:

* Formulation of
problems of

Solution ]
1. From the known nodal coordinates, the area of the triangular element and the constants a;, b;, ¢j, ... involved in the shape heat transfer I_S
functions can be determined as similar to plaln

i stress/strain

A= E(Xi,"/i + XYk + XkYi — XiYk — Xj¥Yi — Xkj) problems
= %(50 x 50 + 70 x 60 + 55 x 30 — 50 x 60 — 70 x 30 — 55 x 50) = 250 in® * In this example
the symbols a,
ai = Xjyk —Xkyj = 70 x 60 — 55 x 50 = 1450 b and C are
1

3j = X¥j — Xi¥ic = 55 %30 —50 %60 = —1350 used instead of

a, B, and y

ax = X;yj — Xj¥i = 50 x 50 — 70 x 30 = 400
bi=y;—y =50-60 = —-10
b = yx—y; = 60—30 = 30
by = yi—y; = 30—-50 = -20
G =X —X = 55-70 = —15
G = Xi—Xxx = 50—-55 = -5

Clo =X Xi — 70— 50 = 20
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The shape functions can be found as

1 1
N,’(X,y) = z—A(a; -+ b,'X + C,'y) = ’50—0(1450 — 10x — ]5}/) = 2.9-0.02x — 003y

Ni(x,y) = ﬁ(ai + bix + ¢jy) = 5(1)—0(—1350 +30x — 5y) = —2.7 +0.06x — 0.01y

1 1
Nk(x,y) = Z_A(ak + bkx + cry) = %(400 —20x +20y) = 0.8 — 0.04x + 0.04y

2. The temperature distribution in the element can be expressed as
T(x,y) = Ni(x,y)Ti + Nj(x,y) T; + Ni(x, y) Ti

= 210(2.9 — 0.02x — 0.03y) + 270(—2.7 + 0.06x — 0.01y) + 250(0.8 — 0.04x + 0.04y)
The temperature at the point (x, y) = (60, 40) in can be found as

T(60,40) = 210(2.9 — 1.2 — 1.2) +270(—2.7 + 3.6 — 0.4) + 250(0.8 — 2.4 + 1.6) = 240°F
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EXAMPLE 3.9

The nodal coordinates of a triangular plate element subjected to in-plane loads follow:
Node i: (x;, yj) = (10, 10) mm
Node j: (x, ;) = (20, 50) mm
Node k: (xg, yp) = (=10, 30) mm
The in-plane displacement components of the nodes are given by

(ujvi) = (1,=1) mm, (u;, vj)) = (= 2,1) mm, (ug, vi) = (0.5, —0.5) mm

Express the variations of u(x, y) and vx, y) in the element in terms of the shape functions.
Approach: Express the linear variations of u(x, y) and V(x, y) in the element using Eqs. (3.51) and (3.52).

Solution
The shape functions of the element can be derived as (see Problem 3.56)

Ni(x,y) = 1.1 +0.02x—0.03y
Nj(x.y) = —0.4 4+ 0.02x + 0.02y
Nk(x,y) = 0.3 —0.04x+0.01y

The variation of the u-displacement inside the element can be expressed, using Eq. (3.51), as:
u(x,y) = (1.1 4+0.02x — 0.03y)u; + (= 0.4 4+ 0.02x + 0.02y)u; + (0.3 — 0.04x + 0.01y)uy
= (1.1 40.02x — 0.03y)(1) + (— 0.4 + 0.02x + 0.2y)(— 2) + (0.3 — 0.04x + 0.01y)(0.5)
= 2.05 - 0.04x — 0.065y
Similarly, the variation of the v-displacement inside the element can be expressed, using Eq. (3.52), as:
v(x,y) = (1.1 4 0.02x — 0.03y)v; + (= 0.4 + 0.02x + 0.02y)v; + (0.3 — 0.04x + 0.01y) v

= (1.1 +0.02x — 0.03y)(—= 1) + (— 0.4 + 0.02x + 0.02y)(1) + (0.3 — 0.04x + 0.01y)(- 0.5)
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Step 3: Define the Strain/Displacement and Stress/Strain Relationships

* The element strains and stresses are expressed in terms of the unknown nodal
displacements.

Element Strains:

 The strains associated with the two-dimensional element are given by:

au

du

ady

dx
oV

ady

ov

dx

. (23-3)

Substituting displacement functions for u and v from Eqgs. (2) into Eqg. (23a), yields

Ex= QA , €35 = QAg, VYxy= Q3 T as (23-b)



* It can be observed from Eg. (23-b) that the strains in the element are constant.
» The element is then called a constant-strain triangle (CST).

« It should be also noted that based on the assumption of choosing displacement
functions that are linear in x and y, all lines in the triangle element remain straight
as the element deforms.

 Using eqs. (19) for the displacements, we have

u %
— — Ux = ,_(Niui £3 Nj”j L3 Nm”m) (24)
0X 0X

or Uy = N u; + Nj..\'uj + Ny xlm (25)

where the comma followed by a variable indicates differentiation with respect to
that variable.

 We have used u;, = 0 because u;, = u(x; , y; ) Is a constant value (a nodal value);
similarly, u;, =0and u,, = 0.



 Using Egs. (18), we can evaluate the expressions for the derivatives of the shape
functions in Eq. (25) as follows:

| 4 Bi
Wiz = —=—(0 + Bix T By) = —= (26)
2Agx & TRET YY) = oy
similarl .
g Nj..\' = & and Nm..\' = & (27)
| 2A 2A
» Therefore, using egs. (26) and (27) in Eqg. (25), we have
du l (28)
— = —(Biu; + Bjuj + Pmlim)
o 3 B Bjuj + Bmitm
similarly IV I
— = —Yivi T YjV;i T YmVm
3y 5 A (i YjVj T YmVm) (29)
du 7Y |
(7_)’ £ Z - ﬁ(’)’i”i + Biv; + yiuj + ,Bj"’j + YmUm + BnVm)
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 Using Egs. (28) and (29) in Eq. (23-a), we obtain

: Bi

= —1|0
{e} >A

Y

U;

O B; 0 PBn 0

U,
0 Y 0 Ym | 4

Yi
Bi Xi Bj Ym Bm

y
1 m

* Or In abbreviated matrices

(ey=[B] [B]] [Bul]{{d}

where )
B
Bl=—1|0
|Bi ] A
Vi

Yi

Bi

({d;})

~"

{dm}

| Bj ! |
0 ' Bm —
A Y | B |

Bi]=
[B)] ~ 2A
Y Bj
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BHI

’)/HI

Ym

BN?

(30)

(31)

(32)



 Finally, in simplified matrix form, Eq. (31) can be written as

(e} = [B{d) (33)

[B] = |[B:] [B;] [Bu]] (34)

where

« The [B] matrix (sometimes called a gradient matrix) is independent of the x and y
coordinates.

* It depends solely on the element nodal coordinates, as seen from Eqs. (32) and
(10).

 The strains in Eq. (33) will be constant (consistent with the simple expressions
previously given by Eqg. (23-b).



Stress/Strain Relationship:

* In general, the in-plane stress/strain relationship is given by
where [ ]

O, E,

o, r =[DK &y ¢
| | 35-a
Ty Yxy ( )

where [D] Is given by:
1 v 0 |

o =—— " "2 (35-b)

10 o .

for plane stress problems.
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and 1 —V V

D] = (35-c)

for plain strain problems.

« Using Eq. (33) in Eqg. (35-a), we obtain the in-plane stresses in terms of the

unknown nodal degrees of freedom as

to} = [D] [B] d}

where the stresses {o} are also constant everywhere within the element.

(36)



Step 4: Derive the Element Stiffness Matrix and Equations

* Using the principle of minimum potential energy, we can generate the
equations for a typical constant-strain triangular element.

 Keep in mind that for the basic plane stress element, the total potential

energy Is now a function of the nodal displacements u; , v; , U;, ..., Vy,
(that 1s, {d}) such that

Tp = JT;_;(L)I;, VisUjs..., Vi) (37)
* Here the total potential energy Is given by
w, =U + € + Q, + Q4 (38)

where the strain energy Is given by

U = %w{gﬂ{a} 4V (39)



substituting eq. (35) in eq.(39), gives
I _
- EJJJ ()7 [D]{e} dV (40)
The potential energy of the body forces is given by

Q, =~ ||| (X} av (41)
V

where {y} Is again the general displacement function, and {X} is the body
weight/unit volume or weight density matrix (typically, in units of pounds per cubic
Inch or kilonewtons per cubic meter).

The potential energy of concentrated loads Is given by
Q, = —{d} {P) (42)

where {d} represents the usual nodal displacements, and {P} now represents the
concentrated external loads.



The potential energy of distributed loads (or surface tractions) moving
through respective surface displacements Is given by

Q = —JJ (s)" (Ts) ds (43)

where {Tg} represents the surface tractions (typically in units of pounds
per square inch or kilonewtons per square meter),

{ws} represents the field of surface displacements through which the
surface tractions act, and S represents the surfaces over which the
tractions {T.} act.

Similar to Eq. (21), we express {y<} as
{ws)= [NsHd},

where [N¢] represents the shape function matrix evaluated along the
surface Ehere the surface traction acts.



 Using Eq. (21) for {1} and Eq. (33) for the strains in Egs. (40) through (43), we
have

T = %jﬂ{d}T[B]T[D][B]{d}dv — [[[{ay"INTT (X} @V — {d}T (P}
' (44)

— [[{a@}"INsTT{Ts} s
S

« The nodal displacements {d} are independent of the general x — y coordinates, so
{d} can be taken out of the integrals of Eq. (44). Therefore,

5, = dtar [fjueronmavia - o {Jfinrix

—{dYT{P} — {d)T [[[Ns]"(T5} dS
S

(45)
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From Eqgs. (41) through (43), we can see that the last three terms of Eq.
(45) represent the total load system {f} on an element; that Is,

- J.”[N]T{X} ay +{FP] + ”[N.S']T{TS}(/S (46)
v :

where the first, second, and third terms on the right side of Eq. (46)

represent the body forces, the concentrated nodal forces, and the surface
tractions, respectively.

Using Eq. (46) In Eq. (45), we obtain

e = ; (d) m BldV{d} — {d\T{f) (47)



« Taking the first variation, or equivalently, the partial derivative of m, with respect
to the nodal displacements since m,, = m,,({d}) (as was previously done for the bar
element),we obtain

-

e | [[riosav|a - 1) =0 49)
Rewriting Eqg. (48), we have

J]] B [DI[B) aV{d} = {f} (49)

From Eq. (:9) we can see that 50)

(k] = [|[IBI"[DI[BaV
V
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* For an element with constant thickness, t, Eq. (50) becomes

(k] = z‘:J.[B]T [D][B] dx dy (51)

A

 where the integrand is not a function of x or y for the constant-strain
triangular element and thus can be taken out of the integral to yield

[k] =t A[B]"[D][B] (52)

where Ais given by Eqg. (9), [B] Is given by Eqg. (34), and [D] is given
by Eq. (35-b) or Eqg. (35-¢C).

We will assume elements of constant thickness. (This assumption iIs
convergent to the actual situation as the element size is decreased.)



* From Eq. (52) we see that [K] Is a function of the nodal coordinates (because [B]
and A are defined in terms of them) and of the mechanical properties E and v (of
which [D] is a function).

* The expansion of Eg. (52) for an element is
[kl Tky] Thin] |

(k1= | kil Tkl [hjm] (53)
_[k””] [kmj] [kmm]_‘

» where the 2 x 2 submatrices are given by
[kii1 = [Bi1" [D1[B; 1A
[k;;] = [B;]" [D][B,]iA (54)
[kim] = [B:]1" [D][ B, ItA

and so forth.
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* InEgs. (54), [B; ], [B; ], and [B,] are defined by Egs. (32).

« The [K] matrix is seen to be a 6 x 6 matrix (equal in order to the number of
degrees of freedom per node, two, times the total number of nodes per element,
three).

* In general, Eq. (46) must be used to evaluate the surface and body forces.

* When Eq. (46) is used to evaluate the surface and body forces, these forces are
called consistent loads because they are derived from the consistent (energy)
approach.

* For higher-order elements, typically with quadratic or cubic displacement
functions, Eg. (46) should be used.

» However, for the CST element, the body and surface forces can be lumped at the
nodes with equivalent results and added to any concentrated nodal forces to obtain
the element force matrix.



* The element equations are then given by

T ful ﬂ
fl\ Fkll /\’12 /(]6— V]
) f:l.\' = /\'.21 /\’.33 /\'.3(j | Uu»n | (55)
Jay : : : Vs
S3x ket ke ... ke [|u3
f3y 5%

 Finally, realizing that the strain energy U is the first term on the right side of Eqg.
(47) and using the expression for the stiffness matrix given by Eg. (50), we can
again express the strain energy in the quadratic form

1
U= 5 (@) [kl{d)
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Step 5: Assemble the Element Equations to Obtain the Global Equations and
Introduce Boundary Conditions

» The global structure stiffness matrix and equations can be obtain by using the

direct stiffness method as

(K] = > [k')] (56)

e=1
and
{F} = [K]{d} (57)
where, in Eg. (56), all element stiffness matrices are defined in terms of the global x
— y coordinate system,

{d} is now the total structure displacement matrix, and

N
(F} = Y {f®) (58)
e=1



Is the column of equivalent global nodal loads obtained by lumping body forces and
distributed loads at the proper nodes (as well as including concentrated nodal loads)
or by consistently using Eq. (46).

Note:

» In the formulation of the element stiffness matrix Eq. (52), the matrix has been

derived for a general orientation in global coordinates.
»Equation (52) then applies for all elements.
» All element matrices are expressed in the global-coordinate orientation.

» Therefore, no transformation from local to global equations is necessary.



Transformation of Element Matrices from Local to Global Coordinates:

« If the local axes for the constant-strain triangular element are not parallel to the
global axes for the whole structure, we must apply rotation-of-axes
transformations similar to those used for truss element.

 This transformation should be applied to the element stiffness matrix, as well as
to the element nodal force and displacement matrices.

« The transformation of axes for the 47

triangular element shown in the figure is

Illustrated by considering the element to

have local axes x” — y' not parallel to

global axes x —. - X



* Local nodal forces are shown in the figure.

 The transformation from local to global equations follows the procedure of truss
elements.

* The general expressions to relate local to global displacements, forces, and
stiffness matrices, are the same; that is,

{d’} = [Tl{d}

« Where for the transformation matrix [T] used in truss element must be expanded
because two additional degrees of freedom are present in the constant-strain

triangular element.

e Thus,

(fy=ITHf} [kl =I[T1 [K]T] (59)

C S' 0 0f 0 of
=8 €} 0 @6; 0 O]%

A B K where C=cos 8 ,S=sin 8
0 0. 01 =5 €1 0 _0f v

0 01 0 0] C S| un
| 0 01 0 0:-§ Cf v,
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Step 6: Solve for the Nodal Displacements

* The unknown global structure nodal displacements are determined by solving the
system of algebraic equations given by Eq. (57).

Step 7: Solve for the Element Forces (Stresses)

« Having solved for the nodal displacements, we obtain the strains and stresses in
the global x and y directions in the elements by using Egs. (33) and (36).

 Finally, we determine the maximum and minimum in-plane principal stresses o
and o, by using the equations:

gy + gy Oy — Oy ) 9
o] — 5 - + 5 ' + Txy = O max

) d |
o, t o, Oy — 0y | )
o) = — — - + Ty = O'mi
~ 2 \/( 2 X) min

(60)




 These stresses are usually assumed to act at the centroid of the element.
* The angle that one of the principal stresses makes with the x-axis is given by

27,
tan20, = 2. (61)

O,y — 0y

Example:

Evaluate the stiffness matrix for the element shown in Figure 6-11. The coordinates are
shown in units of mm. Assume plane stress conditions. Let E = 210 GPa, v = 0.25,
and thickness = 20 mm. Assume the element nodal displacements have been determined
to be u; = 0.0, v = 0.05mm, u; = 0.025mm, v, = 0.0, u3 = 0.0, and v3 = 0.05 mm.
Determine the element stresses.

Plane stress element for stiffness m=3
matrix evaluation

See pages 355-357 of Daryl L. Logan

“ A First Course in the Finite Element Method”
Sixth edition

I =1 (0~ _20)
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Treatment of Body and Surface Forces:

1. Body Forces:

Using the first term on the right side of Eq. (46), we can evaluate the body forces at
the nodes as

(o) = ||| INT (X} dV (6.3.1)
)

where (Y} = { X }
Yh

and X, and Y are the weight densities in the x and y directions in units of force/unit
volume, respectively.

* These forces may arise, for instance, because of actual body weight (gravitational

forces), angular veIOC|ty (called centrlfugal body forces), or inertial forces in
dynamics.

(6.3.2)



 In Eq. (6.3.1), [N] is a linear function of x and y; therefore, the integration must be
carried out.

« Without lack of generality, the integration is simplified if the origin of the
coordinates is chosen at the centroid of the element.

 For example, consider the element with coordinates shown in figure.

 With the origin of the coordinate placed at the centroid of the element, we have,
from the definition of the centroid,

[Jxda={[yaa =0 B
« and therefore, \ ‘
J.J. BixdA = _”7:’,\'(114 =0 (6.3.3) B ;[

and I J

b
0= a; = ay = % 634 1




Using Egs. (8.3.2) through (6.3.4) in Eq. (6.3.1), the body force at node i is then
y

represented
i] = - ).J..
P |3

Similarly, considering the j and m node body forces, we obtain the same results as in Eq.
(6.3.5). In matrix form, the element body forces are

f bix X b

f ;bh.-' Yb

ﬁ)jx X» | At
pt=< 7 = —_ (6.3.6)
{Tb} f bjy Yb 3

f Emu‘ X b

fbm)' Yp

From the results of Eqg. &6.3.6), we can conclude that the body forces are distributed to the
nodes in three equal parts.

The signs depend on the directions of X, and Y, with respect to the positive x and y global
coordinates.

For the case of body weight only, because of the gravitational force associated with the y
direction, we have only Y, (X, = 0).



2. Surface Forces:

Using the third term on the right side of Eqg. (46), we can evaluate the surface forces
at the nodes as

(i} = [[INsT (Ts} ds (6.3.7)
S

 The subscript S in [Ng ] in Eq. (6.3.7) means the shape functions evaluated along
the surface where the surface traction is applied.

« We will now illustrate the use of Eq. (6.3.7) by considering the example of a
uniform stress p (say, in newtons per square meter) acting between nodes 1 and 3
on the edge of element 1 in the figure. v

L

gz@

L

-— D (N/mg)

P4
\ Yy Y Yy
[-n'

> - X

(a) (b)



* In Eq. (6.3.7), the surface traction now becomes

Px P _
N — _ 3.
{Ts} {p‘_ } {0} (6.3.8)

-

Ny O
0 N
N, O
and [Ng]' = O— N (6.3.9)
Ny O
O N3 | evaluatedatx =a, y =y

« As the surface traction p acts along the edge atx =a and y=y fromy =0 to y= L,
we evaluate the shape functions at x=a and y=y and Integrate over the surface

from O to L in the y direction and from O to t in the z- direction, as shown by Eq.
(6.3.10).
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 Using Egs. (6.3.8) and (6.3.9), we express Eg. (6.3.7) as

Ni

N3
0

0
Nj
0
N>
0

N3

{g } dz dy

evaluated at x =a, y =y

Simplifying Eq. (6.3.i0), we obtain

I
~

{fs } T

Nlp
0

dy

evaluatedatx = a,y =y
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* Now, by Eqgs. (6.2.18) (with i =1), we have

] |
N, = —(ay + Bix + vVv) (6.3.12)
| = ol Bi Y1V | |

 For convenience, we choose the coordinate system for the element as shown in the
figure. by

« Using the definition Egs. (10), we obtain

y

] Y ¥

O = XiVm — YVjXm
or,withi =1, j =2, and m = 3,

@] = X2y3 — V2X3 (6.3.13)
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« Substituting the coordinates into Eqg. (6.3.13), we obtain

 Similarly, again using Egs. (10), we obtain
B=0 vy =a (6.3.15)
 Therefore, substituting Eqgs. (6.3.14) and (6.3.15) into Eq. (6.3.12), we obtain
ay
Ny = — 6.3.16
T3 ( )
 Similarly, using Eqgs. (18), we can show that
Ny= 29470 g Ny = BT (6.3.17)
2A 2A
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 On substituting Egs. (6.3.16) and (6.3.17) for N;, N,, and N5 into Eqg. (6.3.11),

 Evaluating N, N,, and N; at x = a and y =y (the coordinates corresponding to the
location of the surface load p),

« and then integrating with respect to y, we obtain

L_2
a > P

0
(f) = —— 0 > (6.3.18)
7 2(aL)2) 0

| o
[b—?)ap

0

 where the shape function N,= 0 between nodes 1 and 3, as should be the case
according to the definitions of the shape functions.



« Simplifying Eq. (6.3.18), we finally obtain

fsix Per/zﬂ
fsl_\‘ 0
(£} = ; = 1 8 > (6.3.19)
- pLt/2
fs3\' 0 pLt
- < : A 2
 The figure shown illustrates the results for | ¢
the surface load equivalent nodal forces for
both elements 1 and 2. oLy . P’;’
Q| L
41 y pLt
2
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« We can conclude that for a constant-strain triangle, a distributed load on an
element edge can be treated as concentrated loads acting at the nodes associated

with the loaded edge by making the two Kkinds of load statically equivalent.

« However, for higher-order elements such as the linear-strain triangle, the load
replacement should be made by using Eq. (6.3.7), which was derived by the

principle of minimum potential energy.

* For higher-order elements, this load replacement by use of Eq. (6.3.7) Is generally
not equal to the apparent statically equivalent one; however, it is consistent in that

this replacement results directly from the energy approach.
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Explicit Expression for the Constant-Strain Triangle Stiffness
Matrix:

 Recall that the stiffness matrix is given by
[k] = tA[B)T[D][B] (6.4.1)

 Consider the plain strain case, this leads to

[k]

tE

T 440 + v = 2v)

5 o

0 Yi
Bi O
0 v;
ﬁ m 0

0 '}’m

Yi

Bi 1 — 11 7
y; | Y { E 8 Bi O Bj 0 Bn O

' X Y Y 0 Yi 0 Y 0 Ym
y 2 Yi ﬁf Y ﬁ i Ym Bm
Bm |
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[k]

« On multiplying, gives

| —2v
2

) Biviv + Bi')’i(] —22v) BiB;j(1 —v) + %‘71(1 — 2v) Pryyv + Bm(

2(1 — + 2
Bl —v) 7,( >

1 —2v

(E 'y,z(l—v)+ﬁi2( 2
e g0 -+ i) B + B

Symmetry

1=2v

) Bjyiv + Bm’(l _22v) rpd =t ﬁiﬁj(
1—2v

Bumyiv + Bi‘)’m(

) BiBu(l — v) + mm(

(1=2
'ylz-(l—v)+3l~_( S v

Buyiv + Bﬂ’m(

Bi(l—v)+ 73.(

1-—

1—-2
D V) YJYm(l —-v) +Bjﬁm(

=)

2v

1= 2
BiBn(l —v) + mm( > Y

ZV)
- 2v

> ) Bjymv + Yjﬁm(

Biymv + Bmv.-(

‘Yi'y”l(l - V) + BiBm(

‘YNIBI"V + Bnern(

73.(1—V)+B.%(

1 —=2v

=)
1——22v)
1
l—2v)

1 —2v

2
1—2v
2
1—2v
2

)
)

(6.4.3)

For the plane stress case, we need only replace 1 — v by 1, (I — 2v)/2 by (1 — v)/2, and

(1 + v)(I — 2v) outside the brackets by | — vZin Eq. (6.4.3).
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Examp le:  Forathin plate subjected to the surface traction shown in Figure 6-16, determine the nodal
displacements and the element stresses. The plate thickness t = 20 mm, E = 210 GPa, and

v = 0.30.
- ‘/20 mm
A
400 mm i
200 mm 4+—» T = 7MPa
4
Y maa

W Figure 6-16 Thin plate subjected to tensile stress
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Rectanqular Plane Element (Bilinear Rectangle, Q4):

 The four-noded rectangular plane element stiffness matrix will be developed.

 This element is also called the bilinear rectangle because of the linear terms in x
and y for the x and y displacement functions.

* The “Q4” symbol represents the element as a quadrilateral with four corner nodes.
« Two advantages of the rectangular element over the triangular element are:

a) ease of data input, and

b) simpler interpretation of output stresses.

A disadvantage of the rectangular element is that the simple linear-displacement
rectangle with its associated straight sides poorly approximates the real boundary
condition edges.



Step 1 Select Element Type:

Consider the rectangular element shown in Figure 6-20 (all interior angles are 90°) with cor-
ner nodes 1—4 (again labeled counterclockwise) and base and height dimensions 2b and 2h,
respectively.

The unknown nodal displacements are now given by

dy=1{7% (6.6.1) byo

Hd_ - - M1,

vy vy
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Step 2 Select Displacement Functions

For a compatible displacement field, the element displacement functions # and v must be linear
along each edge because only two points (the corner nodes) exist along each edge. We then
select the linear displacement functions as

u(x,y) =a + axx + azy + asxy
(6.6.2)
v(x,y) =as + agx + a7y + agxy

There are a total of eight generalized degrees of freedom (a’s) in Eq. (6.6.2) and a total
of eight specific degrees of freedom (u;, v; at node 1 through uy, v4 at node 4) for the
element.

We can proceed in the usual manner to eliminate the a;’s from Egs. (6.6.2) to obtain

u(x,y) = ﬁ[(b —x)h —y)u; + (b + x)(h — y)u

+ (b +x)(h +y)us + (b —x)(h +y
(b +x)h + yus + ( X)(h + y)ug] (6.6.3)

|
v(x,y) = m[(b —x)h —y)vi + (b + x)(h — y)v,

+ (b +x)h +y)v; + (b —x)h+ y)v,]

U of Bsarah - D of Civil Eng Dr Abdulamir Atalla 2022



These displacement expressions, Egs. (6.6.3), can be expressed equivalently in terms of
the shape functions and unknown nodal displacements as

W} =I[N{d} (6.6.4)
where the shape functions are given by
N, = (b —x)h —y) N, = (b +x)h—y)
4bh 4bh (6.6.5)
(b +x)(h +y) (b —x)(h +y) o
N3 == N4 -
4bh 4bh

and the N; s are again such that Ny = [ at node | and Ny = 0 at all the other nodes, with similar
requirements for the other shape functions. In expanded form, Eq. (6.6.4) becomes

u_N10N20N3ON4O
10 N 0 N 0 Ny O N
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Step 3 Define the Strain-Displacement and Stress/Strain Relationships

Again the element strains for the two-dimensional stress state are given by

Using Eq. (6.6.2) in Eq. (6.6.7a), we express the strains in terms of the a s as

gy = ay + agy

gy = a7 + agx

Yy = (a3 + ag) + asx + agy

U of Bsarah - D of Civil Eng Dr Abdulamir Atalla 2022

du
dx
£
' adv
-:gv = < —
) Jy
RE4 u v
_|_
dy ax

(6.6.7a)

(6.6.7b)



Using Eq. (6.6.6) in Eq. (6.6.7a) and taking the derivatives of # and v as indicated, we can
express the strains in terms of the unknown nodal displacements as

{e} = [Bl{d} (6.6.8)
—h—y) 0 (h—y 0
where [B] = ﬁ 0 —(b — x) 0 —(b + x)
—(b—-x) —(h—y) —(b+x) ((h-—y)
- (6.6.9)
(h +vy) 0 —(h +v) 0
0 (b + x) 0 (b —Xx)

(b+x) (h+y) (b—x) —(h+y)

From Egs. (6.6.7b), (6.6.8), and (6.6.9), we observe that &, is a function of y, &, is a func-
tion of x, and y,y is a function of both x and y. The stresses are again given by the formulas in
Eq. (6.2.36), where [B] is now that of Eq. (6.6.9) and {d} is that of Eq. (6.6.1).

{o} = [DI[Bl{d} (6.2.36)
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Step 4 Derive the Element Stiffness Matrix and Equations:
 The stiffness matrix is determined by
(k1= [" [” [BITIDIIBI dx dy (6.6.10)

 with [D] again given by the usual plane stress or plane strain conditions, Eq.
(6.1.8) or (6.1.10).

l v 0 [—v v 0
) E v o l=v 0 .
[D1= : 2 . IE)V (6.1.8) D] = | 4+ v)(1=2v | = 2v (6.1.10)

 Because the [B] matrix is a function of x and y, integration of Eg. (6.6.10) must be
performed.

* The [K] matrix for the rectangular element is now of order 8 x 8.



» A numerical evaluation of Eq. (6.6.10) for [K] is shown in Eg. (6.6.11) using b= 4
in.,h=2in.,t=1in., E =30 x10° psi, and v = 0.3.

[ 1.35e10  5.486e9 —1.688¢9 —4.22¢8 —6.752e9 —5.486e9 —5.064e9  4.22e8
5486e9  2.447el0  4.22e8 9.284e9 —5486e9 —1.224el0 —4.22e8 —2.152¢l0
—1.688¢9  4.22¢8 1.35e10 —5.486e9 —5.064e9 —4.22e8 —6.752e9  5.486e9
(K] = —4.22e8 9.284e9 —5.486e9  2.447el0 4.22e8 —2.152el0  5.486e9 —1.224el0 (6 5 11)

—6.752e9 —5.486e9 —5.064e9  4.22e8 1.35e10 54869 —1.688¢9 —4.22e8 T
—5.486e9 —1.224el0 —4.22e8 —2.152el0  5.486e9  2.447el0  4.22e8 9.284¢e9
—5.064e9 —4.22e8 —6.752e9  5.486e9 —1.688¢9 4.22e8 1.35e10 —5.486e9

| 4.22e8 —2.152el0  5.486e9 —1.224el0 —4.22¢8 9.284e9  —5.486e9  2.447el0 |

The element force matrix is determined by Eq. (46) as
(f) = [[[INT'{X}dV + (P} + [[[NsI"{T}dS (6.6.12)
|4 S

where [N] 1s the rectangular matrix in Eq. (6.6.6), and N, through N4 are given by Egs. (6.6.5).
The element equations are then given by

{f} =[k){d} (6.6.13)
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Step 5 through 7:

« Steps 5 through 7, which involve assembling the global stiffness
matrix and equations, determining the unknown nodal displacements,
and calculating the stress, are identical to those for the CST.

« However, the stresses within each element now vary in both the x and
y directions.



Numerical Comparison of CST to O4 Element Models and
Element Defects:

 Table 6-1 compares the free end deflection and maximum principal
stress for a cantilevered beam modeled with 2, 4, and 8 rows of either
all triangular CST elements or all rectangular Q4 elements.

Typical Q4 and CST models:

I m ¥

Q4—S8 row

CST—2 row

NSOUONANANN NANNANNN
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Table 6-1 Table comparing free-end deflections and largest principal stresses for CST and
Q4 compatible element models (end force P = 4000N, lengthL = 1m,/ =1 X 10"°>m?*,
thickness = 0.12m, E = 200 GPa, G = 77.5 GPa)

Number of Tensor Stress,
Plane Element Number of Degrees of Free End (0.05m from
Used/Rows Nodes Freedom Displ.,m wall) o, MPa
Q4/2 60 120 5.044 %1074 17.34
Q4/4 200 400 6.500 %104 18.71
Q4/8 720 1440 6.661 %104 18.94
CST/2 60 120 3.630 %1074 7.10
CST/4 200 400 5537x%104 13.20
CST/8 720 1440 6.385 %1074 16.91
Exact Values 6.672 X104 19.00
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SIMPLEX, COMPLEX, AND MULTIPLEX ELEMENTS:

* Finite elements can be classified into three categories simplex, complex, and multiplex
elements depending on the geometry of the element and the order of the polynomial used
In the interpolation function.

« The simplex elements are those for which the approximating polynomial consists of
constant and linear terms.

 Thus, the following polynomials represent the simplex functions for one-, two-, and three-
dimensional elements.

For n = 1 (linear model)

 Noting that a simplex is defined as a One-dimensional case:
geometric figure obtained by joiningn + 1 d(x) = ) + ax
joints (nodes) in an n-dimensional space, Two-dimensional case:
we can consider the corners of the elements i s = e -2t b B
as nodes In simplex elements. Three-dimensional case:
 For example, the simplex element in two G(x,¥,2) = a1 + X + a3y + auz

dimensions is a triangle with three nodes
(corners).



¢(x)
A

d(X. y)
= 04+ 0 X
¢(x) 1T U2 T (l)]
: h $(X.y) =aq+aX+ogy z
[ I I (% ¥ 2)
o : : D; .
| |
| | | |
| |
| P Y ‘ :
| | | I | k
D; : $(x) : : : I |I (X Yio Z4)
| I Pl ey | j
| | Co ! (%% 2)
|
1 1
{ —_— - —  —  — Y . \?\:\-‘\I\ 0
0 ."F (J.'F j | ! ! ! y (% 4. 2)
X (X %) : y
|
Xj"l“i-ﬁ:(ﬁ_xi);’ Jj
X
- X N (X ¥i)
One-dimensional simplex el )
ne-dimensional simplex element. k ] _ _
(Xe Vi) A three-dimensional simplex element.

Two-dimensional simplex element.
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» The complex elements are those for which the approximating polynomial consists of quadratic,
cubic, and higher order terms, according to the need, in addition to the constant and linear terms.

» Thus, the following polynomials denote complex functions.

For n = 2 (quadratic model)
One-dimensional case:

d(x) = a + ax + X
Two-dimensional case:
d(x,y) = a; + aox + a3y + X’ + sy’ + apxy
Three-dimensional case:
d(x,v,2) = o) + aox + a3y + a7+ a@;.\‘2 + a'(,_\'2 + o5 Z+ NgXV + Qg VZ + X2

For n = 3 (cubic model)
One-dimensional case:

b(x) = a; + arx + azx’ + aux°
Two-dimensional case:
d(x,y) = a + x + azy + a4.\1 + Qs _\‘2 + QgXy + o + ag_\‘3 + a(;.\j}‘ + a'm.\'_\'2
Three-dimensional case:
d(x,v,7) = ) + ox + azy + 47 + a*_r,.\“2 + a*(h\'2 + a’7:3 + g Xy + Qg VI + 0pXZ + |.\'3 + a',l\"q‘ + a,;,:“

s) o] s) s) ] o]
+ QXY+ Q) sXTZ + QY T+ QXY+ QXD + @9V + G XVZ

U of Bsarah - D of Civil Eng Dr Abdulamir Atalla 2022



* The complex elements may have the same shapes as the simplex elements but will
have additional boundary nodes and, sometimes, internal nodes.

 For example, the interpolating polynomial for a two-dimensional complex element
(including terms up to quadratic terms) Is given by the second of the preceding
equations.

« Since this equation has six unknown coefficients «;, the corresponding complex
element must have six nodes.

 Thus, a triangular element with three corner nodes and three mid-side nodes
satisfies this requirement.



* The multiplex elements are those whose boundaries are parallel to the coordinate
axes to achieve interelement continuity, and whose approximating polynomials
contain higher order terms.

 The rectangular element shown is an example of a multiplex element in two
dimensions.

 Note that the boundaries of the simplex and complex elements need not be parallel
to the coordinate axes. |




LINEAR INTERPOLATION POLYNOMIALS IN TERMS OF NATURAL COORDINATES:

* The derivation of element characteristic matrices and vectors involves the
Integration of the shape functions or their derivatives or both over the element.

» These integrals can be evaluated easily if the interpolation functions are written in
terms of a local coordinate system that is defined separately for each element.

* In this section, we derive the interpolation functions of simplex elements in terms
of a particular type of local coordinate systems, known as natural coordinate

systems.

A natural coordinate system is a local coordinate system that permits the
specification of any point inside the element by a set of nondimensional numbers

whose magnitude lies between 0 and 1.

 Usually, natural coordinate systems are chosen such that some of the natural
coordinates will have unit magnitude at primary or corner nodes of the element.



One-Dimensional Element:
 The natural coordinates for a one-dimensional (line) element are as shown.

-—fz —-—-71‘1 —_—

*— @

L L
0 X Node 1 P Node 2
X4 X X5

(1. 0) (Ly, Lp) (0. 1)

* Any point P inside the element is identified by two natural coordinates, L, and L,,
which are defined as
L — 171 _ XX and L, = !73 XX 1)

X2 — X X2 — X

* where [; and [, are the distances from a point in the element to nodes 2 and 1,
respectively, and [ is the length of the element.

* Since It Is a one-dimensional element, there should be only one independent
coordinate to define location of any point P.



This is true even with natural coordinates because the two natural coordinates L, and L,

are not independent but are related as o
L.+L2_7‘|73_1 (2)

The natural coordinates L, and L, are also the shape functions for the line element, i.e.

Ni = L, N; =L,
T 3)

Any point x within the element can be expressed as a linear combination of the nodal
coordinates of nodes 1 and 2 as

X = xiLy + xLls (4)

Combining equations (2) and (2) gives

L L o >
Solving for L, and L, yields, '* X Xl L

Ehoaals 0 e
L, (o —x1) | —x; 1 X [ | —x; 1 %




In determining the stiffness matrix, it was found that the strains and stresses are
derivatives of displacement, and hence the derivatives of shape functions.

In natural coordinates, the shape functions for one dimensional elements are L, and L,.

If f is a function of L, and L,, differentiation of f with respect to x can be performed, using
the chain rule, as

df df dL, Odf dL, (7)
dx  dL, dx 0L, Ox
dL, | and dL, | (8)
dx X — X ane dx X — X

Shape functions are also need to be integrated.

Integration of polynomial terms in natural coordinates can be performed by using the

simple formula ,
a! ! ] (9)

(a+pB+1)!

/ LOLY dx
< X

where «! is the factorial of « given by a! = a (v — 1) (v — 2) ...
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Two-Dimensional (Triangular) Element:

* When expressed in Cartesian coordinates, the interpolation functions for the
triangular element are algebraically complex.

* Further, the integrations required to obtain element characteristic matrices are
cumbersome.

* Considerable simplification of the interpolation functions as well as the
subsequently required integration 1s obtained via the use of area coordinates.

* The tigure below shows a three-node triangular element divided into three areas
defined by the nodes and an arbitrary interior point P(x , y).

* Note: Pis not a node.
* Pis the point (x,y) at which the value of the

field variable (displacement) is to be used.

2



* The area coordinates (location) of P are defined as

A, A> As
Ll = —, L: = — L_-; —_—
A A A

where

A, 1s the area of the triangle formed by the points P, 2 and 3;
A, 1s the area of the triangle formed by the points P, 1 and 3;
A; 1s the area of the triangle formed by the points P, 1 and 2; and

A 1s the area of the triangle 123.

* Because Li are defined 1n terms of areas, they are also known as area
coordinates.

* Since Al +A,+A; = A

‘ then Al ill 113
— | [ 3 = ]
+ + l+ _+l




 Astudy of the properties of L,, L,, and L; shows that they are also the shape
functions for the two-dimensional simplex (triangular) element:

N; =L, N, =1L, N¢=L;

 The relation between the natural and Cartesian coordinates Is given by:

x = x1Ly + x50, + x314 }

y = nLi +y2ls + y3L;3
* To every set of natural coordinates (L,, L,, Lj)
which are not independent but are related by:
L,+ L,+L; =1.0, there corresponds a unique
set of Cartesian coordinates (X, y).

« Atnodel,L,=landL,=L,=0,andso on. Iy




* The linear relationship between L; (i = 1, 2, 3) and (X, y) implies that the contours

of L, are straight lines parallel to the side 2, 3 of the triangle (on which L, = 0),
and so on.

3

* The relation between area coordinates and their

relations with Cartesian coordinates can be expressed as
In matrix form as

(1) 11 1] (L)
S X p = |Xx3 X X3|<K Ly p [,-08
LY vioy2 ya| | L3

Variation of the area coordinate L;

can be inverted to obtain

[ l [ (03 —x372) (—y3) (i3—x)] (1)
§ Ly p = 2A (x3y1 —xy3) (y3—x»m) (1—x3) | x
£y (X122 —xy1) i—x2) (ke—x1) | \ Yy,
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» where A is the area of the triangle 1, 2, 3 given by

| X1 W1

I
A - E 1 -\‘2 '\'2
| X3 V3

I ~of oL
dx — dL; dx
’
o 0 oL
6_\‘ N 1 GL, dy
where

Ly ys—y3 0Ly,  x3—x; )
ox 24 7 dy 24
aLg - V3 — Vi aLg o X1 — X3 >
dx 24 7 dy  2A
6L3 - Vi— W 6L3 o X2 — X
dx 24 7 dy 2A

/
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For integrating polynomial terms in natural coordinates, we can use the relations

' ; al3!
/ L1 -dP = LA
JE = ((\' + D + l )'

and

i Y1 G1y!
/ / LiL,L;-dA = i 2A
JJx (a+08+7v+2)!

* The first equation Is used to evaluate an integral that Is a function of
the length along an edge of the element.

r

* Thus, the quantity &£ denotes the distance between the two nodes that
deflne the edge under consideration.

 Second equation is used to evaluate area integrals
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EXAMPLE 3.11
Show that the natural (area) coordinate L; (i =1, 2, 3) is the same as the shape function N; given by Eq. (3.35).

Solution
The area coordinate L;, defined as the ratio of the area of the shaded triangle to the total area of the triangle ijk shown in Fig. 3.14,

can be expressed as

1
A 3Pd 4
L'=7=l_=F (E.1)
Sbh
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where d and h denote the distances of the perpendiculars from the points Pand ito the base jk of the triangle. The area A; of the
triangle Pjk can be determined in terms of the coordinates of P, j, and k as

I x y
2A0 = |1 X ¥ | = X0 — Xy +x(y; — vi) + y (e — X)) (E.2)
1T Xk W
Eqgs. (E.1) and (E.2) lead to
2A4 1
L1 — 2—/\ — ﬂ{xjyk —xky,-+x(y,--yk)+y(xk —Xi)} (E.3)

which can be seen to be identical to the shape function N; given by Eq. (3.35). This shows that the area coordinates of a linear
triangular element are identical to the shape functions.
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2.2 NUMERICAL INTEGRATION

In finite element method, numerical integration has acquired immense importance,
particularly in the context of isoparametric elements. For evaluating element stiffness matrix
and element load matrix, one comes across integrations of the type

+1
I= .[1 £&) dE ...(2.43a)
+1 p+1
I= J'_l L £(E,M) dE dn ..(b)
+1 e+l p+1
and I= J‘ j FEML dE dn dC ..(c)
£ A

for one, two and three dimensional problems respectively. The reader must be familiar with
the numerical integration process using trapezoidal rule and Simpson’s rule. In these methods,
the sampling points are equispaced and weightages are decided by considering a local piecewise
curve passing through two and three consecutive points respectively. Trapezoidal rule and
Simpson’s rule are particular cases of a general Newton-Cotes quadrature (integration) method.

In finite element method, another method which is more popular and accurate is used.
This is Gauss or Gauss-Legendre method of integration. In this, the locations of the sampling
points and corresponding weigthages are decided so as to obtain exact integral for a polynomial
of given degree. Each Gauss point involves two unknowns namely, location of the point . and
weightage W.. For n Gauss points, there are 2n unknowns involved. With 2n unknowns, it is
possible to represent a polynomial of 2n — 1 degree exactly. Hence, n Gauss points can exactly
integrate a polynomial of 2n — 1 degree or less.
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2.2.1 One Dimensional Integration

The integral in Eq. 2.43a is written as —
+1 s
[ rea=>wre .(2.44)
= i=1 |

It is easy to verify that the integral of function

+1
fo) = | ghde ..(2.45)
is zero when £ is odd. Thus, for example,
1 1 +1
r &d§=f+ & d&=j EdE =0 ...(2.46)
=1 =1 £

Further, these functions have zero values at = 0. Hence, to obtain zero value of such
odd functions [A) = — fl— £)], following rules are decided.

(i) For even number of Gauss points (i.e. n = 2, 4, 6...), the sampling points must be in
pairs and the points in pairs must have equal weightages. Thus,

E=—aand & =+ a; Wa) = W(-a) }
E=—band & =+ b; W(b) = W(-b)
(iz) For odd number of points (i.e.,n =1, 3, 5...), one point must be at £ =0 and remaining
points must be in pairs as mentioned in rule (i) mentioned above.

...(2.47)
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L.e.,

The integrals of the function (Eq. 2.45) when £ is even are written as

+1
L 1de =2 |
o+ 1 9 _g
|, £% dE = S b ...(2.48)
r+1 4 _g
J-1 5 45 = 51 J

The locations and weightages for n = 1, 2, 3... are derived below.
Consider n =1

J:l fEdE = J:l 1+&)dE =2+0 ...(2.49)
Only one Gauss point is needed. Hence, it will be located at = 0. Using Eq. 2.44
W(0)A10) = 2 I]
wo0)1)=2 ; ...(2.50)
Hence, W(0) = 2 IJ
Consider n = 2
+1 +1 2
|| fode=[ a+E+g2+EHdE=240+5+0 (2.51)
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The terms £ and &3 will be taken care of by the two rules mentioned above. To get exact
integral of remaining terms (separately for each term), using Eq. 2.44

For f&)=1;W)l)+ W(-a)l) =2 ...(2.52a)
For (&) = E2; Wiaa? + W(- a)a?= % .(2.52b)
Noting that W(a) = W(-a)

Wia) + W(a) = 2 «(2.52¢)
and W(a)a? + Wia)a? = % .(2.52d)
solution gives Wia) =1 ...(2.52¢)
and G = \/g = 0.877 350 269 ...(2.52f)

Consider n = 3

+1
jl (1+E,+&2+§3+§4+§5)d§=2+0+§+0+§+0 ...(2.53a)

Three Gauss points are needed. Obviously, one will be at £ = 0 and remaining two will
be in pair at { = —a and = + @ with W(a) = W(- a). Using Eq. 2.44

For fE)=1; W(—=a)l)+ WO)1) + Wa)1) =2 ...(2.53b)
For f€)=E2; W=a)?+0+ Waa?= % ...(2.53¢)
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For fE&) =E&*; W=a)a*+ 0+ W(-a)a*= % ...(2.53d)
Solution is obtained noting that W(a) = W(- a).

W(0) = % - 0.888 888 889 ‘]
W(a) = g = 0.555 555 556 | .(2.54)

a= \/g =0.774 596 699‘]

It is difficult to derive weightages and locations for n > 3. Interested reader can see
Ref. 1 for information upto n = 10. The locations and weightages upto n = 4 are given in Table 2.2.

1 n
Table 2.2: Locations and Weightages for Gauss Integration J: fE&)dE = Z W.fE;)

i=1

n Location Weightage
1 0 2.000
- 0.577 350 269 1.000
2
+ 0.577 350 269 1.000
- 0.774 596 669 0.555 555 556
3 0 0.888 888 889
|l e BNIAROON00 ] . 0.555 555556 _ _ |
—-0.861 136 312 0.347 854 845
—0.339 981 044 0.652 145 155
4 + 0.339 981 044 0.652 145 155
+0.861 136 312 0.347 854 845
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Information of Table 2.2 is useful to integrate a function in the range (-1 <& <+ 1). It
is, however, possible to integrate a function f (£) in the range (a <x <b) by suitably correlating
coordinates in actual and parent regions.

Example 2.1. Find I using Gauss integration method.

b 6 g .
I= " fdx= j2 (3 + 4x + 6x2 + 4x%) dx .(2.55)
The relation between x and £ can be readily expressed as
a+b (b—a)
= + =4
x 2 2 e + 28
dx =2dg
dx = S = length scale factor = 2
dg
Two Gauss points are needed for exact integration. Gauss points are located at
2x1
X, =4 = 2.8453
: V3
xg=4+ 2%1 _ 51547

V3
f(x,) = 155.0947 ; W(1) = 1.0
f(x,) = 730.9051 ; W(2) = 1.0
Hence, I=2(155.0947 x 1 + 730.9051 x 1)
I =1771.9996
Exact value of integral is 1772. Only four digits after decimal are used in the calculations.
Hence, there is small difference.
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